[发明专利]基于深度学习的混凝土裂缝识别系统及方法在审

专利信息
申请号: 202211061974.1 申请日: 2022-08-31
公开(公告)号: CN115482462A 公开(公告)日: 2022-12-16
发明(设计)人: 王燕华;陈子彦;戴博闻;何俊泽 申请(专利权)人: 东南大学
主分类号: G06V20/10 分类号: G06V20/10;G06V10/764;G06V10/12;G06T7/73;G06T3/00;G06T3/20;G06N20/00
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 陈月菊
地址: 210096 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 混凝土 裂缝 识别 系统 方法
【说明书】:

发明公开了一种基于深度学习的混凝土裂缝识别系统及方法。其中,系统包括:裂缝图像数据采集模块,用于采集获取混凝土表面裂缝图像并输出;图像数据处理模块,连接所述裂缝图像数据采集模块,根据所拍摄的混凝土表面裂缝图像,对获取的图像进行预处理识别;裂缝识别模块,利用基于剪枝先验框的改进SSD算法模型对裂缝的图像进行识别,对裂缝进行标识,并将结果进行储存。本发明使得工程中对混凝土裂缝检测识别过程更加容易可操作,另一方面也提高了检测的识别精度和速率,尤其是在识别复杂环境的裂缝图片时,表现出了很高的抗干扰能力。

技术领域

本发明属于土木工程中非接触检测应用领域,尤其是一种用于复杂环境下的基于深度学习的混凝土裂缝识别系统及方法。

背景技术

在建设和运营过程中由于诸多因素而产生的各种裂缝作为桥梁或道路表面最普遍的病害,也是危害极大的病害之一。如果不及时进行监测及养护,则可能会进一步衍生出次生病害,对裂缝进行及时、准确的监测是路面及桥梁养护工作中最为关键的一环。单纯依靠检测人员在借助检测设备的帮助下对混凝土结构进行检测,工作强度大且效率低,还可能使检测人员的安全受到威胁。利用计算机视觉处理图像,外在环境会对该方法造成严重的影响导致检测结果不正确,并且在对图像进行处理的步骤中会出现许多噪音。而基于深度学习的检测算法能够在很好地处理图像的同时,也能很精确地识别出目标,但是由于图像噪声无法完全消除,以及环境噪声的干扰,无法对复杂环境下的裂缝进行检测识别。目前,对于复杂环境下的裂缝识别效果并不理想,需要进一步改善。

发明内容

本发明目的是提供一种用于复杂环境下的基于深度学习的混凝土裂缝识别系统及方法,以解决以上问题。

一种基于深度学习的混凝土裂缝识别系统,包括:

裂缝图像数据采集模块,用于采集获取混凝土表面裂缝图像并输出;

图像数据处理模块,连接所述裂缝图像数据采集模块,根据所拍摄的混凝土表面裂缝图像,对获取的图像进行识别预处理;

裂缝识别模块,利用基于剪枝先验框的改进SSD算法模型对裂缝的图像进行识别,对裂缝进行标识,并将结果进行储存。

进一步的,所述裂缝图像数据采集模块,包括:拍摄平台、高速SD存储卡、服务器和数据库。在确定检测目标后,即可通过拍摄平台对目标区域进行图像采集,通过提前设置好预处理和识别系统的图像提取路径,实现对上传到电脑的图像进行实时识别并将图像自动传输至服务器。

进一步的,所述拍摄平台可采用无人机系统或普通智能手机或单反相机为载体,可根据设备条件和其他方面的要求进行选择,采集到的图像可通过本系统编写的程序的自动传输至服务器,实现数据的实时传输。

进一步的,所述图像数据处理模块,通过图像灰度化及修正,图像滤波处理和裂缝标记定位,对获取的图像数据进行预处理,以加快识别的收敛速度。

进一步的,所述图像灰度化及修正中将图像像素的R、G、B分量采用分量法规则转化为三者相等的形式,进行图像灰度化;通过对灰度化的图像进行直方图均衡化可以对灰度进行再分配,使灰度值均匀地分布于灰度区间内,通过线性和非线性拉伸的灰度变换对图像进行拉伸处理,对图像进行灰度化修正。

进一步的,所述图像滤波处理采用中值滤波方法,选取该像素点邻近所有像素点灰度值的中值作为该点滤波处理后的像素值,从而消除在图像中孤立的噪点。

进一步的,所述裂缝标记定位,采用LabelImg工具进行标记,先在图像中标记出目标位置,后转换为XML格式的文件,再传输到裂缝数据识别模块的算法模型中进行识别。

所述裂缝数据识别模块,采用基于剪枝先验框的改进SSD算法建立的混凝土裂缝识别模型,通过将图像传输到服务器后,即可利用训练好的模型进行识别,并将识别出的裂缝及其分析内容回传至智能端,同时将信息传输入数据库进行备份。其可对复杂环境下的混凝土裂缝照片进行有效识别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202211061974.1/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top