[发明专利]一种船舶甲板浸没角直接计算方法在审
申请号: | 202210424534.1 | 申请日: | 2022-04-21 |
公开(公告)号: | CN114925443A | 公开(公告)日: | 2022-08-19 |
发明(设计)人: | 刘春雷;黄连忠;孙霄峰;尹勇;靳哲 | 申请(专利权)人: | 大连海事大学 |
主分类号: | G06F30/15 | 分类号: | G06F30/15;G06F119/02;G06F119/14 |
代理公司: | 大连东方专利代理有限责任公司 21212 | 代理人: | 鲁保良;李洪福 |
地址: | 116026 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 船舶 甲板 浸没 直接 计算方法 | ||
1.一种船舶甲板浸没角直接计算方法,其特征在于:包括如下步骤:
A、建立坐标系
采用左手坐标系,建立船体坐标系oxyz,原点选在船舶基平面、中横剖面和中纵剖面的交点上;规定x轴指向船艏为正,y轴指向右舷为正,z轴向上为正;
B、建立船舶外壳及所有舱室的三维光刻格式模型即STL模型
通过以下两个途径之一建立船舶外壳的STL模型:
B1、对于存在设计数据的船舶,用船舶设计软件导出IGES模型即初始图形交换规范模型,然后再通过3D建模软件转换成STL模型;转步骤C;
B2、对于没有船舶设计数据的船舶,根据装载手册中的型值表、静水力数值表、总布置图数据利用建模工具对船舶外壳进行三维重建得到船舶外壳及所有舱室的STL模型;
C、按照甲板高度所在平面,切割STL模型获取甲板边线离散点,并将所有离散点的三维坐标存储到DeckLinePts[]数组中,具体步骤如下:
设甲板高度为h,所在平面方程表示为法向量n=(A,B,C),平面方程表示为:
Ax+By+Cz+D=0
因为平面和水平面平行,所以法向量n=(0,0,1),即A=0,B=0,C=1,D=-h;
遍历STL模型中所有的线段与甲板平面进行求交;设空间线段两个顶点坐标P1(x1,y1,z1)、P2(x2,y2,z2),则交点Pcross计算公式为:
Pcross=P1+(P2-P1)·t
式中:
将所有交点存储到DeckLinePts[]数组中;
D、读取进水点坐标,计算船舶总载重量、重心坐标
设船舶总排水量为W、重心纵向坐标为xG、重心横向坐标为yG、重心垂向坐标为zG、进水点P的纵向坐标为xF、进水点P的横向坐标为yF及进水点P的垂向坐标为zF,进水点P的坐标从装载手册获得;
总载重量及重心坐标按下式计算:
式中,W为船舶总载重量;W0为空船重量,XG0、YG0及ZG0分别为空船重心的纵向坐标、横向坐标及垂向坐标;Pi为各项装载重量;XGi、YGi及ZGi分别为各项装载重量重心的纵向坐标、横向坐标及垂向坐标;
E、计算各个横倾角度下船舶平衡状态时的水线面方程
设定船舶计算横倾角为左倾-70到右倾70°,以固定间隔存储到横倾角数组heel[]中;令i=0,设定计算横倾角angle为heel[0],即-70°,计算横倾角为angle时的倾斜水线面方程,具体步骤如下:
E1、用牛顿迭代法求解船舶平衡方程组
船舶横倾后的稳定状态需要满足2个条件,即:重力和浮力相等、重心和浮心在一条直线上,具体公式如下:
式中,ρ为海水密度,V为船舶排水体积,xB、yB、zB分别为船舶浮心纵向、横向及垂向坐标,xG、yG、zG分别为船舶重心纵向、横向及垂向坐标,θ为船舶横倾角,为船舶纵倾角;
对于平衡方程组:
引入向量表示如下:
式中,T为船中吃水;
使用牛顿迭代法将上述方程转换为二元一次方程组:
求解上述二元一次化方程组,得到船中吃水T及纵倾角
E2、计算当前横倾角下的倾斜水线面方程
根据船舶静力学原理,船舶倾斜水线面的单位法向量如下式所示:
经过船中吃水点PM的纵向、横向及垂向坐标分别为0、0和T,则倾斜水线面的点法式方程为:
将水线面方程单位法向量存储到水线面方程数组WaterLine[]中;
E3、令i=i+1,angle=heel[i]转步骤E1计算横倾角数组heel[]中剩余横倾角的水线面方程,直到heel[]中所有角度遍历计算完成,保存水线面方程计算结果WaterLine[];
F、计算甲板边线离散点数组DeckLinePts[]各个点的浸没角
F1、令i=0,设当前点P为DeckLinePts[0];
F2、计算各个横倾角下进水点P到水线面的有向距离
进水点P的坐标为DeckLinePts[i],到平面有向距离S计算公式如下:
即:
当进水点P在平面法向所指的一面,有向距离S为正值,标记为外;反之为负值;
计算各个横倾角下进水点到倾斜水线面的有向距离,将结果存储到距离数组dis[]中;
F3、计算进水点P的浸没角
根据各横倾角及各有向距离计算最终船舶甲板浸没角;横倾角数组heel[]与有向距离数组dis[]中的元素一一对应,且个数一样,个数用n表示;船舶甲板浸没角计算原理如下:以横倾角为横坐标,有向距离为纵坐标绘制折线段图,折线与x坐标轴的交点,即有向距离为0时所对应的横倾角坐标就是船舶甲板浸没角;n个元素组成n-1条线段,令1≤j≤n-1,则第j条线段的两个点坐标Pj1(θj1,Sj1)和Pj2(θj2,Sj2)计算公式如下:
式中,θj1、Sj1分别为点Pj1的横坐标和纵坐标,θj2、Sj2分别为点Pj2的横坐标和纵坐标;
具体计算步骤如下:
F31:初始化j,令j=1
F32:判断j≤n-1
如果成立,程序循环结束,输出结果;
如果不成立,判断第j条线段是否与横坐标轴相交?
如果yj1yj2<0,则相交,计算进水点P的浸没角,即交点的横坐标x交,将当前进水点P的浸没角存储到数组ImmersionAngles[]中,计算公式如下:
否则,不相交,令j=j+1,转步骤F32;
F4、令i=i+1,P=DeckLinePts[i],转步骤F2,计算甲板边线离散点数组DeckLinePts[]剩余点浸没角,直到DeckLinePts[]数组中所有点遍历计算完成,保存浸没角计算结果到ImmersionAngles[]中;
G、计算最终甲板浸没角
甲板浸没角为DeckLinePts[]所有进水点中最危险点的浸没角,即ImmersionAngles[]中所有浸没角最小值,输出结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连海事大学,未经大连海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210424534.1/1.html,转载请声明来源钻瓜专利网。