[发明专利]一种基于融合多个深度学习模型的房颤识别方法在审
申请号: | 202210036801.8 | 申请日: | 2022-01-13 |
公开(公告)号: | CN114224351A | 公开(公告)日: | 2022-03-25 |
发明(设计)人: | 苏禹磨;符灵建 | 申请(专利权)人: | 浙江好络维医疗技术有限公司 |
主分类号: | A61B5/318 | 分类号: | A61B5/318;A61B5/361;A61B5/352;A61B5/363;A61B5/00 |
代理公司: | 杭州九洲专利事务所有限公司 33101 | 代理人: | 田琦 |
地址: | 310012 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 融合 深度 学习 模型 房颤 识别 方法 | ||
一种基于融合多个深度学习模型的房颤识别方法,能够准确快速的分析心电信号是否出现房颤症状,方法包括1)数据采集和预处理;2)搭建神经网络模型;3)训练神经网络模型;4)对测试集样本进行自动识别;5)模型融合与评估,本发明能够准确快速的分析心电信号是否出现房颤症状然后根据每个模型的输出置信度,进行结果融合,并最终给出房颤的诊断结果。
技术领域
本发明涉及一种基于融合多个深度学习模型的房颤识别方法,属于医疗信号处理技术领域。
背景技术
从医学的角度来说,房颤的判别主要依靠两大标准:P波消失和RR间期不均。其中P波消失指的是,患者心电图中的P波消失,同时P波的地方观察到高频率f波,频率大约为350-600次每分钟。RR间期不均是指房颤患者相邻心拍间QRS波峰的间隔长短不一。
基于这两种房颤检测标准,衍生出了一系列基于心律不齐间隔序列的传统房颤检测算法,以及使用机器学习或者深度学习技术检测单个心拍是否P波消失的房颤检测算法。但这些算法仅研究了房颤与正常窦性心搏的区别,对于频发早搏、房性心动过速、房性早搏二联律等异常心搏无法做出准确的区分,而且这些算法没办法同时考虑P波消失和RR间期不均这两个房颤检测标准。本专利针对P波消失和RR间期不均这两个标准,分别训练出一个深度学习模型,然后根据每个模型的输出置信度,进行结果融合,并最终给出房颤的诊断结果。
发明内容
本发明的目的在于提供一种识别房颤与其他心电异常及正常心电的方法,能够准确快速的分析心电信号是否出现房颤症状。具体方法包括:
1)数据采集和预处理:
(1)输入心电数据,对所述的心电数据进行滤波处理,然后对滤波后的心电数据进行R波定位检测,识别出心电数据中的R波位置,计算出所有的RR间期,同时限制心电信号电压值的绝对值在一定范围内,由此防止个别大数值带来的不好影响;
(2)将心电数据按照30秒钟长度切片,每一份数据为一个长度为L的一维向量,记为Xori;同时将这30秒内数据对应的RR间期数组,记为xRR,其中XRR的长度为100,若这30秒内数据对应的RR间期个数不足100,则补零,若这30秒内数据对应的RR间期个数超过100,则只取前100个RR间期。
2)搭建神经网络模型:
本专利包括两个神经网络模型,其中Model1包含两个依次并联的输入通道,第一个输入通道由四个串联的卷积层单元和一个自注意力层单元组成,第二个输入通道由四个串联的卷积层单元组成,在每一路输入通道的输出端有一个Averagepool层,将每一路输入通道Averagepool层的特征图沿深度方向合并,记为合并层,在合并层之后,串联一个全连接层,最后通过softmax层得到Model1的输出结果。其中Model2只有一个输入通道,先串联三个残差卷积层单元和一个Averagepool层,再串联一个全连接层,最后通过softmax层得到Model2的输出结果,所述卷积层单元使用的是一维卷积。
3)训练神经网络模型:
初始化所述两个神经网络模型参数后,将所有30秒心电信号数据集U划分为数据集U1和数据集U2,把数据集U1的样本作为训练集,把数据集U2的样本作为测试集;将训练集的Xori和XRR输入到初始化后的Model1中,将XRR输入到初始化后的Model2中,以最小代价函数为目标,用Adam优化器进行训练,直到模型收敛,生成所述两个神经网络的参数并保存模型为PB文件。
4)对测试集样本进行自动识别:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江好络维医疗技术有限公司,未经浙江好络维医疗技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210036801.8/2.html,转载请声明来源钻瓜专利网。