[发明专利]一种基于MSF-Net网络的图像分割方法在审
申请号: | 202110642418.2 | 申请日: | 2021-06-09 |
公开(公告)号: | CN113298825A | 公开(公告)日: | 2021-08-24 |
发明(设计)人: | 栗伟;曹仰勇;于鲲;冯朝路 | 申请(专利权)人: | 东北大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/136;G06N3/04;G06N3/08 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 梁焱 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 msf net 网络 图像 分割 方法 | ||
本发明公开了一种基于MSF‑Net网络的图像分割方法,涉及图像分割技术领域。该方法包括:输入待分割图像;先将MSF模块加入U‑Net网络的编码阶段,然后图像X经过编码阶段进行特征提取得到特征图M1~M5,将SE模块也加入U‑Net网络的编码阶段,并将M5经过SE模块得到MS;结合步骤2得到的特征图Mi,将MS经过解码阶段进行特征还原得到Y,根据Y得到图像的分割结果。MSF模块的加入,增加了不同尺度感受野的特征提取模块,解决了U‑Net网络中缺少处理图像多尺度问题的模块这一问题;SE模块的加入,可以使特征图自适应地调整各通道之间的关系,提升了网络对于CT图像中病灶分割的准确率。
技术领域
本发明涉及图像分割技术领域,特别是涉及一种基于MSF-Net网络的图像分割方法。
背景技术
肺炎患者的CT图像包含丰富的图像语义,其中的病灶区域更是蕴含着纹理学、形态学、统计学等不同形式的重要特征。所以一些研究指出,了解CT图像的演变过程可为COVID-19的早期防控、早期诊断及治疗提供重要依据。但是研究人员研究和使用CT图像的前提条件之一是:CT图像中的病灶区域已经具有显著性标注。而如今这项工作多为医生或者专业人员进行的人工标注,重复且大量的CT图像标注工作给工作人员带来了巨大的工作量。而且人工操作一般带有标注者个人的主观思想,并且常常伴有标注者的失误操作现象,所以标注者难以保证精准地在CT图像中标注病灶区域。
2012年提出的AlexNet网络首次将卷积神经网络(CNN)应用在图像识别上。之后陆续出现了很多优秀的图像分割的网络和方法,如:FCN、SegNet、Deeplab v1v2v3、V-net、U-Net等。它们的出现,在进一步提高图像分割精度的同时,也大大地解放了标注者的工作。这些网络中,在医学图像中应用比较广泛,效果比较好的是U-Net网络。U-Net网络的实现思路是:首先将输入的图像不断地进行卷积、池化、激活操作,提取输入图像的特征信息,产生多个特征图,在这个过程中,特征图的大小不断缩小,通道数量不断增大,这个过程被称为“编码阶段”;然后再将编码阶段提取到的最后一个特征图作为输入,重复使用上采样、卷积、激活操作,产生多个特征图,在这个过程中,特征图的大小不断增大,通道数量不断缩小,最后一个特征图被还原至与输入图像的大小一致,这个过程被称为“解码阶段”。其中最后一个特征图中的每个点的值代表对输入图像中的每个像素点的预测值,然后设置一定大小的阈值,根据特征图中每个像素点的值与阈值之间的大小关系来确定分割的区域,以此达到了对输入图像进行分割的效果。然而因为U-Net网络在解码阶段使用了上采样技术,所以无法避免地会造成特征图信息的丢失。针对这个问题,U-Net网络认为编码阶段产生的特征图更加接近于输入图像,具有更丰富的特征信息,因此将编码阶段产生的特征图与解码阶段产生的特征图直接进行拼接操作,以此来弥补解码阶段上采样操作中的信息丢失,这个操作被称为“跳跃连接”。
与此同时,在经过相关专业医生的指导之后,容易发现COVID-19病灶体现在CT图像上具有多尺度的特点:1、病灶的面积大小不一致。例如较小的病灶面积小于1cm2,而最大病灶的面积却接近于半个肺叶;2、病灶的形状不统一。例如磨玻璃型的病灶形态接近于一团海绵,而索条型的病灶却像一道细长的绳索。但是在U-Net网络中并没有设计专门处理图像多尺度问题的模块,因此对于CT图像中的COVID-19病灶,U-Net网络并不能具有很好的分割效果。
发明内容
针对上述现有技术存在的不足,本发明提供一种基于MSF-Net网络的图像分割方法,旨在对U-Net网络进行改进,在传统的U-Net网络中加入MSF模块和SE模块构成MSF-Net网络,通过基于MSF-Net网络的图像分割方法解决基于U-Net网络的图像分割方法无法处理图像多尺度问题,从而提高基于U-Net网络的图像分割方法的精度。
本发明的技术方案为:
一种基于MSF-Net网络的图像分割方法,包括下述步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110642418.2/2.html,转载请声明来源钻瓜专利网。