[发明专利]一种用于水下图像复原的深度学习训练数据集合成方法有效

专利信息
申请号: 202110263407.3 申请日: 2021-03-11
公开(公告)号: CN113012037B 公开(公告)日: 2022-08-05
发明(设计)人: 马峻;尹翔宇;陈寿宏;徐翠锋;郭玲 申请(专利权)人: 桂林电子科技大学
主分类号: G06T3/00 分类号: G06T3/00;G06K9/62;G06N20/00;G06V10/774
代理公司: 桂林文必达专利代理事务所(特殊普通合伙) 45134 代理人: 白洪
地址: 541004 广西*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 用于 水下 图像 复原 深度 学习 训练 数据 集合 成方
【说明书】:

发明公开了一种用于水下图像复原的深度学习训练数据集合成方法,获取现有的RGBD数据集,并基于水下图像参数估计算法计算出真实水下场景对应的RGB颜色数值集合;基于柏林噪声生成不均匀的单通道背景光集合,并利用改进的水下光学模型生成多个数据对应的合成水下图像,其中,多个所述数据为在所述RGBD数据集、所述RGB颜色数值集合和所述单通道背景光集合中随机抽取的数据,考虑了由人工光源和水下自然环境渐变造成的不均匀背景光现象。并改变了随机生成背景光颜色的方法,采用在真实图像上获取的数值,让合成的图像更加逼真,颜色更加自然,提高了图像合成效果。

技术领域

本发明涉及图像处理技术领域,尤其涉及一种用于水下图像复原的深度学习训练数据集合成方法。

背景技术

由于水中存在强烈的光线散射和吸收现象,水下成像往往遭受严重的视觉上的退化。随着机器学习技术近几年的迅猛发展,人们可以通过利用退化后和退化前的成对图像,让网络学习图像复原过程,进而高效的恢复退化图像。当前水下图像合成方法,多利用简化的水下光学模型,但由于该模型的提出最初应用于陆上雾霾图像,故不能完全模拟水下场景的特征。由于光线变化很难预测,在现存的水下图像复原算法中,几乎都只假设背景光为均匀的。这样造成的影响是会对图像某些部分过度增强,使得图像中较亮的一部分在复原结果中过亮,暗的一部分更暗,通过这样的数据集训练的网络也不能具有对真实场景中人工光源造成影响的适应性。

另外由于不同波长光线在水下被吸收的速度不同,在一些在河流和湖泊中,由于藻类和矿物质影响,水体颜色也存在近似黄褐色或灰绿色。一些合成方法为了模拟水下图像背景光的这些颜色特征,在范围内随机取值得到RGB颜色通道数值,或将红色通道数值小于蓝绿色作为先验知识,再随机取值。现有方法合成的水下图像数据不能体现水下图像中不均匀背景光的问题,且不能涵盖各种水体颜色且拟真度不足的缺陷,导致图像合成效果不好。

发明内容

本发明的目的在于提供一种用于水下图像复原的深度学习训练数据集合成方法,提高图像合成效果。

为实现上述目的,本发明提供了一种用于水下图像复原的深度学习训练数据集合成方法,包括以下步骤:

获取现有RGBD数据集,并基于水下图像参数估计算法计算出真实水下场景对应的RGB颜色数值集合;

基于柏林噪声生成不均匀的单通道背景光集合,并利用改进的水下光学模型生成多个数据对应的合成水下图像,其中,多个所述数据为在所述RGBD数据集、所述RGB颜色数值集合和所述单通道背景光集合中随机抽取的数据。

其中,获取现有RGBD数据集,并基于水下图像参数估计算法计算出真实水下场景对应的RGB颜色数值集合,包括:

获取室内外深度数据集,以及获取UIEB数据集;

获取每张所述UIEB数据集的深度信息,并将所述深度信息按照降序排序后,获取排序第一位上的0.1%的像素中最大值,作为一组像素值符合阈值的RGB颜色数值集合。

其中,获取现有RGBD数据集,并基于水下图像参数估计算法计算出真实水下场景对应的RGB颜色数值集合之后,所述方法还包括:

将得到的所述像素值乘以一位以正态分布随机生成的在±0.1之间的数值。

其中,基于柏林噪声生成不均匀的单通道背景光集合,并利用改进的水下光学模型生成多个数据对应的合成水下图像,包括:

将柏林噪声设置为二维,得到一组不均匀的单通道背景光集合;

基于RGBD图像数据、RGB颜色数值和单通道背景光,得到添加了不均匀光成分的改进的水下光学模型,其中,所述RGB颜色数值和所述单通道背景光分别在所述RGB颜色数值集合和所述单通道背景光集合中随机抽取的数据;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110263407.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top