[发明专利]一种Ni2 有效
申请号: | 202010914453.0 | 申请日: | 2020-09-03 |
公开(公告)号: | CN112028043B | 公开(公告)日: | 2022-03-15 |
发明(设计)人: | 刘庆友;么志伟;崔延昭;岑凌 | 申请(专利权)人: | 中国科学院地球化学研究所 |
主分类号: | C01B25/08 | 分类号: | C01B25/08;B01J27/185;B82Y30/00 |
代理公司: | 北京盛询知识产权代理有限公司 11901 | 代理人: | 方亚兵 |
地址: | 550081 贵州*** | 国省代码: | 贵州;52 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 ni base sub | ||
本发明属于催化剂技术领域,具体涉及一种Ni2P的碳热还原制备方法、产品及应用,制备方法包括取磷源、镍源分别配制成水溶液后混合均匀,加入葡萄糖溶液,再次混匀后恒温烘干,产物研磨得粉状物;所得粉状物500℃焙烧后冷却得前驱体;将所得前驱体氩气气氛下900℃焙烧后,在室温下通入1%O2/Ar的混合气流钝化,得目标产物Ni2P。与传统H2‑TPR磷化物制备方法比较,以葡萄糖为碳源的碳热还原法产生的气态产物主要是COx,能够大大降低H2O在气态产物中的分压,避免Ni2P发生水热烧结现象,增加Ni2P的分散度。另外,该碳热还原法不受反应空速和升温速率的影响,操作更加简单,节省成本,有利于工业化生产。
技术领域
本发明涉及催化剂技术领域,具体涉及一种Ni2P的碳热还原制备方法、产品及应用。
背景技术
在光子学,磁学,催化等众多领域,过渡金属磷化物都有广泛应用。过渡金属磷化物,具有与贵金属类似的结构,使其具有相似的特性,在NO还原、N2H4分解和加氢处理等反应中都具有高的催化活性,随着研究的深入,越来越引起更多关注与研究。因此其过渡金属磷化物的合成方法成为了在各个领域广泛使用过渡金属磷化物的关键。然而目前的制备方法中,大多数反应需要高温高压,有些需要涉及有毒物质,还有的在操作方面相对比较复杂且困难。因此,寻求一种绿色简单便捷的合成路线是非常有必要的。
发明内容
为解决上述技术问题,本发明提供一种利用葡萄糖为碳源,经过热处理过程,合成过渡金属磷化镍的制备方法,实现绿色简单便捷的合成磷化镍的技术目的。
一种Ni2P的碳热还原制备方法,包括以下步骤:
(1)取磷源、镍源分别配制成水溶液后混合均匀,加入葡萄糖溶液,再次混匀后恒温烘干,产物研磨得粉状物;
(2)步骤(1)所得粉状物空气氛围500℃焙烧后冷却得前驱体;由于混合液体烘干后的样品含有多种组分如硝酸根等和大量的水,通过低温焙烧除去不参与碳热反应的物种;
(3)将步骤(2)所得前驱体氩气气氛下900℃焙烧后通入O2/Ar的混合气流钝化,得目标产物Ni2P。新鲜过渡金属磷化物具有较强的亲氧性,直接暴露空气易发生强烈的表面氧化反应,甚至发生燃烧导致体相氧化。通过稀薄含氧气体钝化后,能保证在空气中其结构稳定性。
进一步地,所述步骤(1)中,磷源为磷酸氢二胺,镍源为硝酸镍,混合溶液中镍磷碳摩尔比为2:(1~2):(16~64)。
进一步地,所述步骤(1)中,恒温烘干条件为110℃恒温。
进一步地,所述步骤(2)中,500℃焙烧3h后冷却降至室温。
进一步地,所述步骤(3)中,将步骤(2)所得前驱体在30ml/min氩气流环境下以10℃/min的速率从室温加热至900℃,保温1小时,继续通Ar气并冷却至室温,然后通入1%O2/Ar(氩气气氛氧气占比1%)的混合气流钝化2小时,得目标产物Ni2P。
本发明还提供上述的Ni2P的碳热还原制备方法所制备的Ni2P产品。
本发明还提供上述Ni2P作为催化剂的应用。
与现有技术相比本发明具有以下有益效果:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院地球化学研究所,未经中国科学院地球化学研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010914453.0/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法