[发明专利]一种水下机器人回收定位方法在审

专利信息
申请号: 202010595066.5 申请日: 2020-06-24
公开(公告)号: CN111784655A 公开(公告)日: 2020-10-16
发明(设计)人: 朱志宇;朱志鹏;齐坤;曾庆军;戴晓强;赵强 申请(专利权)人: 江苏科技大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T7/136;G06T7/66;G06T7/73;G06T7/80;G06T5/00;G06T5/30;G06K9/62;G01B11/00
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 杭行
地址: 212003*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 水下 机器人 回收 定位 方法
【说明书】:

本发明提供一种水下机器人回收定位方法,利用两台水下CCD相机拍摄标定板,获取双目相机的参数,包括内、外参矩阵,畸变系数和相机之间的旋转、平移矩阵;获取水下双目相机拍摄的视觉图像,作为待分析的输入图像;灰度化与二值化处理输入图像,判断图像中的连通域;光源匹配,对水下图像进行形态学上的处理,获取最终光源中心点坐标;解算AUV与对接坞的相对位置。该方法将短距离高精度的双目视觉定位运用到水下AUV回收的自主对接过程中,利用质心检测算法、连通域检测算法替换Hough圆形检测法以提高计算AUV与对接坞的相对位置信息的实时性,提高了定位的实时性与稳定性,保障了AUV对接成功率。

技术领域

本发明涉及一种基于双目视觉的自主式水下机器人回收对接末端的定位及姿态识别的方法,属于水下机器人回收技术领域。

背景技术

自主式水下机器人(AUV:Autonomous Underwater Vehicle)无人无缆工作在海洋环境中,对于AUV的回收再利用工作是AUV研究及便捷化的重要研究内容之一。近年来,水下光视觉取得了丰富的研究成果,但由于水中环境的光线较暗、悬浮生物较多等干扰因素,使得采集到的图像噪声严重、颜色失真,这些都对水下景物的描述和目标定位产生很大的影响,从而影响水下机器人作业任务和水下机器人的回收工作。

因此,研究水下光视觉目标检测与定位系统,以保证系统测量精度、实时性和稳定性为目标,为水下机器人提供姿态信息和位置信息以便AUV的回收利用。所以水下视觉检测与目标定位技术对于短距离内的AUV回收定位具有重要的研究意义和使用价值。

发明内容

本发明的目的是为了提供一种水下机器人回收定位方法。本发明专利能为AUV提供精确的位置信息,以便AUV的回收,保障AUV的再次利用。

本发明的目的是这样实现的:这步骤如下:

步骤一:利用两台水下CCD相机拍摄标定板,获取双目相机的参数,包括内、外参矩阵,畸变系数和相机之间的旋转、平移矩阵;

步骤二:获取水下双目相机拍摄的视觉图像,作为待分析的输入图像;

步骤三:灰度化与二值化处理输入图像,判断图像中的连通域;

步骤四:光源匹配,对水下图像进行形态学上的处理,获取最终光源中心点坐标;

步骤五:解算AUV与对接坞的相对位置;

步骤六:将双目视觉得到的位置数据与航位推算得到位置数据融合。

综上,本发明主要用于自主式水下机器人在完成相应的水下任务后,对其进行回收过程中,准确获取对接坞的位置信息。这样的过程包含以下步骤:水下双目相机的标定:计算出双目相机的内外参数;双目图像的矫正:畸变校正与立体矫正;双目图像的特征点匹配:形态学处理获取光源信息,质心检测获取光源中心的图像坐标,中心点匹配,去除误匹配;计算对接坞相对自主式水下机器人的位置信息;信息融合:利用卡尔曼滤波融合视觉定位与航位推算定位数据用以优势互补。

航位推算定位的优点在于数据更新频率高。具有较高的系统频带,导航数据输出平稳,短期性较好。能够提供AUV与对接装置的相对位置姿态,这是对接过程一切行为的基础。采用此方法,将很大程度上弥补光视觉定位效率低,稳定性差缺点。

本发明与现有技术相比,具有一下优点:

(1)本发明结合计算机视觉技术与信息融合技术,实现AUV水下对接过程中的实时定位,提高其定位精度,弥补了单一视觉定位的更新周期长,鲁棒性差等缺点。

(2)传统的水下光源检测中运用Hough圆形检测,该方法计算量大,耗时长,本发明改用质心检测算法,计算速度快,实时响应高,提高定位的快速性。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏科技大学,未经江苏科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010595066.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top