[发明专利]一种基于人体语义分割的服饰色彩提取方法有效
| 申请号: | 202010438413.3 | 申请日: | 2020-05-21 |
| 公开(公告)号: | CN111612011B | 公开(公告)日: | 2023-09-05 |
| 发明(设计)人: | 范春朋;董静雅;郑泽宇;桂珺;付殿峥;高原;杨天吉;张力超 | 申请(专利权)人: | 郑泽宇 |
| 主分类号: | G06V10/56 | 分类号: | G06V10/56;G06V10/74;G06V10/762;G06V10/82;G06V10/26;G06V20/70;G06V40/10;G06N3/0464;G06N3/096 |
| 代理公司: | 北京快易权知识产权代理有限公司 11660 | 代理人: | 赵秀英 |
| 地址: | 110623 辽宁省沈阳*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 人体 语义 分割 服饰 色彩 提取 方法 | ||
本发明涉及了一种服饰色彩特征的提取方法,首先对输入的服饰图像进行像素级的语义分割处理,提取图像中的服饰掩膜信息,包含上衣、裤子、连衣裙和半裙;然后将获得的服饰像素区域从RGB颜色值转换到LAB色彩空间,通过手肘法在光照归一化后的LAB值上确定主体色的数量;之后采用色彩聚类的方式进行主体色的提取,并统计主体色中心的面积;最后将识别到的主体色转到HSV色彩空间,提取色相、明度、纯度和冷暖等进行服饰色彩编码。本发明能够对服饰图像中的服装类型和色彩信息进行提取和编码,精确有效地对输入图像中所有服饰进行描述,提高服饰推荐和搭配的合理性和有效性。
技术领域
本发明属于数字图像处理技术领域,具体涉及一种利用人体语义分割来对服饰图像进行色彩提取的方法。
背景技术
随着时代的发展,生活的进步,人们对衣着越来越重视,逐渐意识到了服饰搭配在日常工作和生活中的重要性。可见服饰搭配对自我形象的塑造有着十分重要的意义和影响,然而在现实生活中,人们很难把握自己的身材特点和穿衣风格,且有关服装搭配的理论体系和服务较为缺失,尤其表现为精准的个性化搭配。
服饰穿搭所包含的内容很多,最重要的三要素是色彩、款型和材质。色彩搭配在其中占着绝对地位,人们往往最先注意到的就是颜色,所以色彩是整体搭配的灵魂所在。
服饰色彩提取的基本流程:定位目标服饰、服饰的色彩特征提取。针对定位目标服饰常用的方法有基于Canny算子的梯度检测,获取服饰边缘信息;基于人体姿态关键点的检测定位人体骨架结构等,然后采用二值化、Grabcut等分割算法提取服饰掩膜,获取目标像素值,但这些方法都基于传统的数字图像处理,对于复杂背景场景下的抗干扰效果都不佳。针对色彩特征提取有中位切分法,将图像颜色看作是色彩空间中的长方体,将RGB中最长的一边从颜色统计的中位数一切为二,使得到的两个长方体所包含的像素数量相同,重复上述步骤,直到最终切分得到长方体的数量等于主题颜色数量为止;八叉树算法,将颜色值转换成二进制之后,较低位(八叉树中位置较深层)数值将被压缩进较高位(八叉树中较浅层)。八叉树算法应用到主题色提取可能存在的问题是,每次削减掉的叶子数不确定,但是新增加的只有一个,这就导致服饰的主题色数量并不一定刚好得到满足。
发明内容
本发明的目的在于提供一种利用人体语义分割来提取服饰色彩特征的方法,旨在提供一种精确的服饰定位和色彩提取方式,提高服饰搭配的有效性和稳定性。
本发明采用如下技术方案:
S1、提供RGB格式的服饰图像;
S2、人体语义分割模型的实现:
(1)数据收集和标注,语义信息包含:上衣、裤子、连衣裙和半裙;
(2)卷积神经网络模型搭建:主体架构为DeepLab V3+;
(3)模型训练和测试;
S3 采用针对服饰训练完成的人体语义分割模型进行类别和掩膜提取;
S4 根据不同的服饰语义信息,分别定位和提取服饰所在的前景RGB像素值;
S5 将目标服饰类别的RGB值转换到LAB颜色空间;
S6光照归一化处理,将LAB值划分成个的像素块,每个像素块计算局部颜色均值,最后对每个图像块进行归一化处理,弱化光照的影响;
S7 服饰色彩最小阈值设定,利用手肘法通过循环迭代的方式来确定主体色的数量K;
S8 使用K-means算法对S6中的LAB值进行聚类,聚类簇的个数为K,表征为服饰的基本颜色,中心簇的面积为服饰中的色彩占比,基于LAB值得服饰色彩编码可以表示为F=(C,LS,LM),其中C表示服装类型,LS表示LAB颜色集合,LM表示每个独立色彩对应的面积比例;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑泽宇,未经郑泽宇许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010438413.3/2.html,转载请声明来源钻瓜专利网。





