[发明专利]目标对象的检测方法、装置、设备和存储介质在审

专利信息
申请号: 202010108527.1 申请日: 2020-02-21
公开(公告)号: CN111340766A 公开(公告)日: 2020-06-26
发明(设计)人: 钱晨;林君仪;周嘉明 申请(专利权)人: 北京市商汤科技开发有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/70;G06K9/46;G06N3/04
代理公司: 北京林达刘知识产权代理事务所(普通合伙) 11277 代理人: 刘新宇
地址: 100142 北京市海淀区北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 目标 对象 检测 方法 装置 设备 存储 介质
【说明书】:

本公开涉及一种目标对象的检测方法、装置、设备和存储介质。所述方法包括:对目标场景的三维点云进行特征提取,得到特征提取结果;根据所述特征提取结果,对所述三维点云进行目标对象的类别预测以及位置预测,确定所述目标场景中的目标对象的至少一个候选区域;在每个所述候选区域中,对所述目标对象进行检测,得到检测结果。

技术领域

本公开涉及计算机视觉技术领域,尤其涉及一种目标对象的检测方法、装置、设备和存储介质。

背景技术

三维目标检测任务是计算机视觉及智能场景理解领域的重要问题,可以应用在很多重要领域,如在无人驾驶、机器人、增强现实等方面具有重要的研究意义和应用价值。

在进行三维目标检测时,可以将三维点云与目标模型进行匹配,来确定三维点云中是否包含有目标对象。如果三维点云中包含有多个不同的目标对象,可能需要和多个不同的目标模型分别进行匹配,耗费时间长的同时,检测的准确率也会有所降低。

发明内容

本公开提出了一种目标对象的检测方案。

根据本公开的一方面,提供了一种目标对象的检测方法,包括:

对目标场景的三维点云进行特征提取,得到特征提取结果;根据所述特征提取结果,对所述三维点云进行目标对象的类别预测以及位置预测,确定所述目标场景中的目标对象的至少一个候选区域;在每个所述候选区域中,对所述目标对象进行检测,得到检测结果。

在一种可能的实现方式中,所述对目标场景的三维点云进行特征提取,得到特征提取结果,包括:对所述三维点云进行采样,得到至少一个第一采样点;在所述三维点云中构建至少一个以所述第一采样点为中心的采样区域;对每个所述采样区域进行特征提取,得到至少一个所述采样区域的特征向量;根据每个所述采样区域的特征向量,分别确定所述三维点云包括的每个三维点的特征向量,作为所述特征提取结果。

在一种可能的实现方式中,所述根据所述特征提取结果,对所述三维点云进行目标对象的类别预测以及位置预测,确定所述目标场景中的目标对象的至少一个候选区域,包括:根据所述特征提取结果,对所述三维点云进行目标对象的类别预测,得到类别预测结果,其中,所述类别预测结果用于指示所述三维点云包括的三维点所属的目标对象的类别;根据所述特征提取结果,对所述三维点云进行目标对象的位置预测,得到位置预测结果,其中,所述位置预测结果用于指示所述三维点云中目标对象所在的三维点的位置;根据所述类别预测结果和所述位置预测结果,确定所述场景中包括所述目标对象的至少一个候选区域。

在一种可能的实现方式中,所述根据所述特征提取结果,对所述三维点云进行类别预测,得到类别预测结果,包括:将所述特征提取结果通过类别预测卷积网络进行处理,得到所述三维点云包括的每个三维点所属的目标对象的类别。

在一种可能的实现方式中,所述根据所述特征提取结果,对所述三维点云进行位置预测,得到位置预测结果,包括:将所述特征提取结果通过位置预测卷积网络进行处理,得到所述三维点云包括的每个三维点与每个预设检测框之间的残差量,其中,所述预设检测框的数量不少于一个;根据所述残差量,得到每个所述三维点匹配的检测框,作为所述位置预测结果。

在一种可能的实现方式中,所述位置预测卷积网络通过训练数据训练,所述训练数据包括三维点云样本、目标对象在所述三维点云样本中的第一位置以及与所述目标对象的类别对应的至少一个第一特征向量,所述训练包括:基于所述三维点云样本和初始位置预测卷积网络,得到第一位置预测结果;根据所述第一位置预测结果与所述第一位置之间的误差,得到第一误差损失;根据所述三维点云样本包括的每个三维点的特征向量,与每个所述第一特征向量之间的距离,得到第二误差损失;根据所述第一误差损失和/或第二误差损失,对所述初始位置预测卷积网络进行训练。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京市商汤科技开发有限公司,未经北京市商汤科技开发有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010108527.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top