[发明专利]半自动化图像数据标注方法、电子装置及存储介质有效

专利信息
申请号: 201911117335.0 申请日: 2019-11-15
公开(公告)号: CN110992384B 公开(公告)日: 2023-04-11
发明(设计)人: 邓辅秦;黄永深;彭健烽;冯华;陈颖颖;李伟科 申请(专利权)人: 五邑大学
主分类号: G06T7/13 分类号: G06T7/13;G06T7/194
代理公司: 广州嘉权专利商标事务所有限公司 44205 代理人: 孙浩
地址: 529000 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 半自动 图像 数据 标注 方法 电子 装置 存储 介质
【说明书】:

发明公开了一种半自动化图像数据标注方法、电子装置及存储介质,通过在步骤S200中获取未选择区域坐标点及第一范围值,通过鼠标在未选择区域上点击获取到鼠标的坐标作为未选择区域坐标点。通过多次选择未选择区域坐标点及第一范围值,可以在每一次grabcut分割后再执行边缘跟踪算法获得当前边缘坐标,利用每一次获得的当前边缘坐标更新局部坐标集合,最后在用户确认前景区域被全选中后,会在键盘上按下某个键从而发送出全选中指令,则此时的局部坐标集合就被作为全部坐标集合,由用户输入对应于该前景图像的类别信息,并将类别信息与全部坐标集合保存为json文件用于后续的神经网络训练。

技术领域

本发明涉及计算机图像处理技术领域,特别涉及一种半自动化图像数据标注方法、电子装置及存储介质。

背景技术

grabcut图像分割算法是一种有效的从复杂背景中提取前景目标的图像分割算法,利用了图像中的纹理(颜色)信息和边界(反差)信息,图像分割效果比较好。输入一个包含目标的图像,使用grabcut算法进行图像切割,即可将前景目标从背景图像中分离出来,输出目标为白色和背景为黑色的二值化图片。

grabcut算法的交互方法是通过用户画框来实现。用户画一个框,框住前景物体,鼠标释放以后,前景就可以被分割出来。如图5所示,为现有技术中,使用grabcut算法进行图像分割的效果图。一般可以通过grabcut算法来将前景分割出来,从而获得前景图像的标注数据。但是在采用grabcut算法获取标注数据的时候,只能对前景图像画一个框,导致在对某些轮廓形状比较特别的前景图像使用grabcut算法时,画的框范围特别大,从而在框内存在较多的背景像素,导致grabcut算法精度下降。

发明内容

本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种半自动化图像数据标注方法、电子装置及存储介质,能够多次对待标注图像执行grabcut算法获取前景图像的轮廓坐标,提升了获取到的图像标注数据的精度。

第一方面,本发明实施例提供一种半自动化图像数据标注方法,包括以下步骤:

步骤S100:显示待标注图像,所述待标注图像包括已选择区域和未选择区域;

步骤S200:获取未选择区域坐标点及第一范围值;

步骤S300:基于获取的获取未选择区域坐标点及第一范围值执行grabcut算法并获得grabcut算法分割后二值化图片;

步骤S400:对二值化图片执行边缘跟踪算法获取当前边缘坐标;

步骤S500:基于获取的当前边缘坐标更新局部坐标集合;

步骤S600:基于获取的局部坐标集合更新所述待标注图像的已选择区域;

步骤S700:判断是否收到全选中指令,若是,则生成全部坐标集合,若否,则返回步骤S200;

步骤S800:获取类别信息,并将类别信息与全部坐标集合保存为json文件。

根据本发明实施例的一种半自动化图像数据标注方法,至少具有如下有益效果:通过在步骤S200中获取未选择区域坐标点及第一范围值,通过鼠标在未选择区域上点击获取到鼠标的坐标作为未选择区域坐标点,并以未选择区域坐标点为基准点,根据用户输入的第一范围值来构建正方形,这个正方形就是grabcut算法中的画框操作。通过多次选择未选择区域坐标点及第一范围值,可以在每一次grabcut分割后再执行边缘跟踪算法获得当前边缘坐标,利用每一次获得的当前边缘坐标更新局部坐标集合,最后在用户确认前景区域被全选中后,会在键盘上按下某个键从而发送出全选中指令,则此时的局部坐标集合就被作为全部坐标集合,由用户输入对应于该前景图像的类别信息,并将类别信息与全部坐标集合保存为json文件用于后续的神经网络训练。因此,本实施例提供的半自动化图像数据标注方法,可以在利用grabcut算法进行自动分割的基础上,又可以接受人工的实时干预,提高了图像数据标注的精度。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于五邑大学,未经五邑大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911117335.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top