[发明专利]基于DSP芯片与量化模型的三维物体识别方法有效

专利信息
申请号: 201911018559.6 申请日: 2019-10-24
公开(公告)号: CN110991229B 公开(公告)日: 2023-04-28
发明(设计)人: 王资;朝红阳 申请(专利权)人: 中山大学
主分类号: G06V20/64 分类号: G06V20/64;G06V10/94;G06V10/82;G06N3/0464;G06N3/048;G06N3/084
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 王晓玲
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 dsp 芯片 量化 模型 三维 物体 识别 方法
【说明书】:

发明涉及一种基于DSP芯片与量化模型的三维物体识别方法。包括三维数据采集器、三维数据特征提取器以及特征解码器,三维数据采集器为RGB‑D摄像头,拍摄后得到画面中物体的深度信息,最终合成为点云数据;将该点云数据输入到三维数据特征提取器中,特征提取器中的量化参数模型存储模块用于存量化模型的储参数,利用DSP并行计算加速模块加速特性,快速完成深度神经网络中卷积、池化、残差操作,得到输入数据的特征;特征解码器根据模型训练时对特征加密的方式反向解码,得到需要的特征格式。发明中的特征提取器可以提取三维数据的特征,并且可以通过数据结构优化和硬件加速的方法加速特征提取的速度。

技术领域

本发明属于计算机视觉领域,更具体地,涉及一种基于DSP芯片与量化模型的三维物体识别方法。

背景技术

将模型参数量化表示,称为量化模型,模型文件大小可以减少约3/4,同时可以将浮点运算转换为整型运算,理论上可以提高特征提取的速率。

现有的基于DSP的特征提取器,利用DSP芯片可以并行计算的优势,相较于ARM架构的CPU,可以更快地完成深度网络中各种层的操作,包括卷积层、池化层、残差层等。

使用点云数据进行物体识别,物体识别的方法有很多种,有使用二维数据的和使用三维点云数据的,该类发明或使用模式识别,或采用深度学习方法对对应的物体数据进行特征提取,最终完成识别任务。

三维数据的特征提取器,该类发明的输入不是传统的图像数据(包含xy平面坐标,每个像素点的颜色),而是三维数据,如点云(包含xyz三维坐标,可能包含颜色和其他信息),不同于平面数据,点云数据是连续数据,若将其离散化,则非常稀疏,因此现有的高效方法常常是直接对原始点云信息进行操作,得到输入点云的特征值或特征向量。

现有发明仅分别有上述部分,而未有将它们进行整合使用的,尽管这些技术的领域和方向不尽相同。现有的技术既没有量化的三维数据特征提取器,也没有基于DSP的三维数据特征提取器。之所以尚未有量化的三维数据特征提取器,是因为现有的网络量化结构多基于处理传统的二维图像设计,而要处理三维数据的网络结构的量化结构需要一些变体,如需要处理混合32位整形数和8位整形数、除了卷积外的一般运算的量化计算方式,现今尚未有统一的处理方式。之所以尚未有基于DSP的三维数据特征提取器,是尚未有通用的、成型的、开源的基于DSP芯片的深度学习框架,其开发门槛和难度较大,需要准确地把需要加速的内存数据写入到DSP缓存中,才能利用DSP并行运算的硬件加速的优势。

发明内容

本发明为克服上述现有技术中的缺陷,提供一种基于DSP芯片与量化模型的三维物体识别方法,使得发明中的特征提取器可以提取三维数据的特征,并且可以通过数据结构优化和硬件加速的方法加速特征提取的速度。

为解决上述技术问题,本发明采用的技术方案是:一种基于DSP芯片与量化模型的三维物体识别方法,包括三维数据采集器、三维数据特征提取器以及特征解码器,所述的三维数据特征提取器包括量化参数模型存储模块和DSP并行计算加速模块;所述的三维数据采集器为RGB-D摄像头,拍摄后得到画面中物体的深度信息,最终合成为点云数据;将该点云数据输入到三维数据特征提取器中,特征提取器中的量化参数模型存储模块用于存量化模型的储参数,储存的参数为8bit整型参数;利用DSP并行计算加速模块加速特性,最高可以并行完成相较于x86框架下的32条指令,快速完成深度神经网络中卷积、池化、残差操作,最后得到输入数据的特征;特征解码器根据模型训练时对特征加密的方式反向解码,得到需要的特征格式,如识别任务是将特征解码,得到长度为K的特征向量,以及最大特征值的索引,对照索引-标签表即可得到该数据的标签。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911018559.6/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top