[发明专利]一种图像中目标物的检测方法及装置在审
申请号: | 201910778132.X | 申请日: | 2019-08-22 |
公开(公告)号: | CN110473216A | 公开(公告)日: | 2019-11-19 |
发明(设计)人: | 尚砚娜 | 申请(专利权)人: | 联想(北京)有限公司 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/00;G06T7/70;G06T5/00 |
代理公司: | 11227 北京集佳知识产权代理有限公司 | 代理人: | 李金<国际申请>=<国际公布>=<进入国 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 目标物 图像块 待检测图像 检测结果 检测 图像 准确度 比例增大 尺寸变化 检测图像 图像噪声 整合 分割 申请 | ||
本申请提供一种图像中目标物的检测方法及装置,对待检测图像进行分割得到待检测图像对应的各个图像块;对各个图像块进行检测得到各个图像块对应的检测结果,基于各个图像块的检测结果获得待检测图像的检测结果。虽然目标物在待检测图像中所占比例很小或者目标物的绝对尺寸很小,但是目标物相对于图像块来说目标物所占比例增大或目标物相对于图像块的绝对尺寸变化,在检测的过程中,不会因为目标物在图像中所占的比例很小或者目标物的绝对尺寸很小而导致将目标物错判为图像噪声,进而通过整合每个图像块对应的检测结果的方式来获得待检测图像的检测结果,以识别出待检测图像中的目标物,从而能够准确识别出待检测图像中的目标物,提高检测准确度。
技术领域
本申请属于图像处理技术领域,尤其涉及一种图像中目标物的检测方法及装置。
背景技术
目前通过深度学习模型在检测图像中目标物(如物体表面缺陷)时,当目标物在图像中所占的比例很小或者目标物的绝对尺寸很小(比如一幅图的尺寸为2000*2000,而图像中的目标物只有几十甚至十几个像素),并且目标物与图像背景的对比度不高时,会因为目标物本身的特征不够明显导致目标物被视为是图像噪声,从而忽略掉图像中的目标物,降低检测准确度。
发明内容
有鉴于此,本申请的目的在于提供一种图像中目标物的检测方法及装置,用于提高识别待检测图像中目标物的准确度。
本申请提供一种图像中目标物的检测方法,所述方法包括:
对待检测图像进行分割,得到所述待检测图像对应的各个图像块;
对所述各个图像块进行检测,得到所述各个图像块的检测结果;
基于所述各个图像块的检测结果,获得所述待检测图像的检测结果,所述待检测图像的检测结果用于表示待检测图像中是否存在目标物。
优选的,所述对所述各个图像块进行检测,得到所述各个图像块的检测结果包括:
通过预设模型的调用,获得所述预设模型输出的各个图像块的检测结果,所述预设模型是基于已有图像块以及已有图像块的标注数据进行训练得到,所述已有图像块的标注数据用于指示已有图像块是否有目标物。
优选的,所述基于所述各个图像块的检测结果,获得所述待检测图像的检测结果包括:
如果至少一个图像块的检测结果表明所述图像块中存在目标物,获得表明存在目标物的检测结果对应的图像块中目标物的坐标;
基于各个表明存在目标物的检测结果对应的图像块中目标物的坐标,获得所述待检测图像中目标物的坐标,所述待检测图像中目标物的坐标为所述待检测图像的检测结果。
优选的,所述基于各个表明存在目标物的检测结果对应的图像块中目标物的坐标,获得所述待检测图像中目标物的坐标包括:
获得各个表明存在目标物的检测结果对应的图像块在所述待检测图像中的位置;
基于所述图像块在所述待检测图像中的位置以及各个表明存在目标物的检测结果对应的图像块中目标物的坐标,获得所述待检测图像中目标物的坐标。
优选的,所述基于所述图像块在所述待检测图像中的位置以及各个表明存在目标物的检测结果对应的图像块中目标物的坐标,获得所述待检测图像中目标物的坐标包括:
如果表明存在目标物的检测结果对应的图像块为至少两个图像块,基于所述至少两个图像块中每个图像块在所有图像块中的位置以及表明存在目标物的检测结果对应的图像块中目标物的坐标,获得所述至少两个图像块对应的目标物在待检测图像中的坐标;
对所述至少两个图像块对应的目标物在待检测图像中的坐标进行融合,得到所述待检测图像中目标物的坐标。
本申请还提供一种图像中目标物的检测装置,所述装置包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于联想(北京)有限公司,未经联想(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910778132.X/2.html,转载请声明来源钻瓜专利网。