[发明专利]一种基于路径参数化的移动机器人预测跟踪控制方法有效
申请号: | 201910321935.2 | 申请日: | 2019-04-22 |
公开(公告)号: | CN110095983B | 公开(公告)日: | 2021-11-23 |
发明(设计)人: | 俞立;陈旭;吴锦辉;刘安东;仇翔 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 路径 参数 移动 机器人 预测 跟踪 控制 方法 | ||
一种基于路径参数化的移动机器人预测跟踪控制方法,包括以下步骤:1)建立移动机器人路径跟踪误差模型;2)定义参数化路径更新规则;3)设计性能指标函数;4)定义预测模型向量描述;5)牛顿法求解二次型最优控制量。本发明提供了一种可以有效解决移动机器人设定速度与实际速度无法快速匹配的预测跟踪控制方法。
技术领域
本发明涉及移动机器人路径跟踪控制领域,尤其涉及移动机器人实际速度与设定速度无法快速匹配而提出基于路径参数化的模型预测控制方法。
背景技术
随着软硬件技术和控制技术的发展,机器人已在在各大行业广泛应用。其中,移动机器人路径跟踪控制技术涉及机械工程、电气自动化、传感技术、计算机技术、图像处理技术等多交叉学科的知识成果,在民用、工业、军事各大领域得到了全球国家的高度重视。移动机器人路径跟踪控制技术还适用其他很多场景,例如轮船路径、车床切削路径、自动驾驶等。因此,针对移动机器人路径跟踪控制技术的研究,不仅可以丰富移动机器人运动控制的理论成果,还可以满足多领域对运动控制技术越来越高的要求,具有重大的理论和工程意义。
然而在实际环境中,尤其在复杂的工作环境下,存在各种不确定性因素干扰移动机器人的路径跟踪,其中,在机器人运作过程中,存在实时设定速度与实际速度无法快速匹配导致误差变大的问题,给移动机器人技术带来机遇与挑战。
模型预测控制方法涉及预测模型、滚动时域优化、反馈优化几个部分,相较于其他的控制方法,预测控制能够及时的校正模型失配以及干扰等引起的不确定性,具有建模方便、系统稳定、扩展性好等优点,备受科研工作者的青睐。F.Cortes等人基于预测模型设计多机器人链系统,将预测模型分为六个独立的模块,分别对单个进行模型验证,并分别设计控制器,超调量和稳定时间得到有效控制。Karl Worthmann等人针对非完整移动机器人转向问题,提出基于模型预测控制方案,先建立预测模型,严格分析稳定性,并验证非完整移动机器人的转向效果。肖涵臻等人在论文(基于预测控制方法的轮式机器人编队)中为了能成功控制住者两个系统,实验中采用了模型预测控制(MPC)作为控制方法。模型预测控制通过构建一个带约束的二次规划(QP)求最优问题,并迭代地实时求这个最优问题,得到最优控制输入。刘洋等人在论文(基于模型预测控制的移动机器人路径跟踪控制)中利用非线性模型预测控制(Nonlinear Model Predictive Control,NMPC)具有滚动优化和反馈校正的机理,能够处理系统的状态约束和输入约束。然而,这些结果没有将移动机器人实际的速度匹配问题考虑进来,当经过预测模型、滚动优化、二次型问题求解过程后输入控制量时,移动移动机器人需要加速或者减速达到设定值,该过程受电池、电机、驱动以及惯性等问题的影响,因此,针对移动机器人输入速度与实际速度匹配问题的研究非常有必要。
发明内容
为了克服现有技术无法解决移动机器人控制量设定速度与实际速度无法快速匹配的问题,本发明提供一种基于路径参数化的移动机器人预测跟踪控制方法,通过该问题建立跟踪误差模型,基于该模型给出预测性能指标函数,并利用二次规划求解最优控制量。
本发明解决其技术问题所采用的技术方案是:
一种基于路径参数化的移动机器人预测跟踪控制方法,包括以下步骤:
1)建立机器人运动学模型,x=[x,y,θ]T为机器人实际位姿,(x,y)为机器人实际位置,θ为机器人实际角度,定义r=[xr,yr,θr]T为虚拟机器人参考位姿,(xr,yr)为虚拟机器人参考位置,θr为虚拟机器人参考角度,则机器人运动学模型为:
其中,v为机器人实际线速度,ω为机器人实际角速度,vr为虚拟机器人参考线速度,ωr为机器人参考角速度,跟踪误差模型为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910321935.2/2.html,转载请声明来源钻瓜专利网。