[发明专利]一种基于自适应布谷鸟优化法的图像多阈值分割方法有效
| 申请号: | 201811269617.8 | 申请日: | 2018-10-29 |
| 公开(公告)号: | CN109242878B | 公开(公告)日: | 2020-06-05 |
| 发明(设计)人: | 孙敏;韦慧 | 申请(专利权)人: | 安徽理工大学 |
| 主分类号: | G06T7/136 | 分类号: | G06T7/136;G06T7/11;G06T7/194;G06N3/00 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 232001 *** | 国省代码: | 安徽;34 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 自适应 布谷鸟 优化 图像 阈值 分割 方法 | ||
本发明涉及一种基于自适应布谷鸟优化法的图像多阈值分割方法,由获得需要处理的灰度图像、设定目标函数、用自适应布谷鸟优化法寻找最佳阈值、图像多阈值分割步骤组成。鸟窝的初始位置分布在灰度图的像素大小边界值范围内,以最大熵作为本方法的适应度函数,以适应度值的大小来评价每个鸟窝所在位置的优劣,通过不断经历莱维飞行和随机偏好游动迭代环节更新鸟窝位置,快速准确地找到全局最优阈值,对图像进行分割。本发明与现有技术相比,具有分割阈值精准度高,较好的实时性等优点,可用于彩色图像和灰度图像分割。
技术领域
本发明属于图像处理技术领域,具体涉及一种基于自适应布谷鸟优化法的图像多阈值分割方法。
背景技术
图像分割本质上是一个分类问题,目的是将一幅图像划分成若干个具有某种均匀一致性的区域,从而提取出图像中的一个或多个目标。阈值分割法是一种传统的图像分割方法,其具有物理意义明确、易于实现的特点。当扩展到图像多阈值分割时,搜索空间大,计算复杂度高和计算时间长,则传统的穷举法不能达到良好的实时性。
最大熵阈值法是使得分割后的图像目标类和背景类的总熵值最大,即用几个阈值将图像的灰度直方图分成独立的类,使得各类的总熵最大。因此可以被视为一个优化问题。目前很多学者将智能优化算法如粒子群优化方法、萤火虫优化方法等应用于图像多阈值求解。但是仍存在搜索速度慢、精度不高等问题。
布谷鸟算法(Cuckoo Search,简称CS)模拟了布谷鸟独特的寻窝产卵行为,并引入自然界鸟类、果蝇运动轨迹的Lêvy飞行机制,能够快速有效地寻找到最优解。但同其他群智能算法一样,也存在后期易陷入局部最优、搜索精度低等缺点。所以引入一种自适应步长的改进布谷鸟(Adaptive Cuckoo Search,简称ACS)优化法来改善布谷鸟算法的局部寻优能力,并将其应用到以最大熵为准则函数的灰度图像多阈值分割中,来提高其分割质量和速度。
发明内容
本发明要解决的技术问题是:提供一种基于自适应布谷鸟优化法的图像多阈值分割方法,解决传统最大熵法耗时长、精度不高的问题。
解决上述问题所采用的技术方案是由下述步骤组成:
(1)图像预处理
读入需要处理的灰度图即待分割图像,确定阈值个数。
(2)设定目标函数
选取最大熵法作为目标函数,最大熵法如下:
对于灰度范围为{0,1,…,L-1}的图像,L为图像的灰度级,设有k个阈值将图像划分为k+1类,有
其中,Hi(t1,t2,…,tk)为第i个个体的适应度函数值,i为有限的正整数,t1,t2,…,tk为分割阈值,pi为第i个灰度出现的概率,最佳阈值使得总熵取得最大值,即
(3)用自适应布谷鸟优化法寻找最佳阈值
1)设置参数
随机生成N个鸟窝且N为正整数,最大迭代次数为itermax、发现概率pa∈[0,1],将N个鸟窝随机分布在灰度图像最大灰度值Lmax和最小灰度值Lmin之间。
2)确定适应度函数值
根据公式(1)和鸟窝初始位置Xi,确定适应度函数值Hi。
3)莱维飞行更新鸟窝位置
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽理工大学,未经安徽理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811269617.8/2.html,转载请声明来源钻瓜专利网。





