[发明专利]自动驾驶状态判别方法和装置在审
申请号: | 201811228611.6 | 申请日: | 2018-10-22 |
公开(公告)号: | CN111091020A | 公开(公告)日: | 2020-05-01 |
发明(设计)人: | 张俊飞;罗盾;王静;毛继明;董芳芳 | 申请(专利权)人: | 百度在线网络技术(北京)有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08;G06F30/20 |
代理公司: | 北京市铸成律师事务所 11313 | 代理人: | 杨瑾瑾;陈建焕 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 自动 驾驶 状态 判别 方法 装置 | ||
本发明实施例提出一种自动驾驶状态判别方法和装置。该方法包括:将自动驾驶仿真结果包括的N维数据输入三元组深度网络;利用三元组深度网络对所述N维数据进行降维处理,输出M维数据;其中N大于M,且M和N为正整数;将所述M维数据输入分类网络;利用所述分类网络对所述M维数据进行判别,输出所述自动驾驶仿真结果对应的驾驶状态。本发明实施例利用三元组深度网络和分类网络对自动驾驶仿真结果进行判别,能够准确地判别自动驾驶仿真的状态,从而能够反馈调整仿真策略。
技术领域
本发明涉及自动驾驶技术领域,尤其涉及一种自动驾驶状态判别方法和装置。
背景技术
现有一般基于硬规则判别无人车在仿真场景的运行效果。例如:无人车有没有违反交通规则,有没有压实线,超车有没有保留足够安全距离,加速减速太频繁使得的体感不适等。
基于硬规则来评估无人车的驾驶行为,虽然可以对硬边界实现精准的判别,但是无法让无人车有效理解一个全局场景。
与人类优秀的驾驶员相比,对场景的理解深度不够,可能导致无人车作出的决策太过笨拙而保守。例如,无人车在路口遇到行人会减速停车,即使行人停下让行,无人车也不会做出正常行驶的决策,而是一直等待行人走过才开始行驶。
发明内容
本发明实施例提供一种自动驾驶状态判别方法和装置,以解决现有技术中的一个或多个技术问题。
第一方面,本发明实施例提供了一种自动驾驶状态判别方法,包括:
将自动驾驶仿真结果包括的N维数据输入三元组深度网络;
利用三元组深度网络对所述N维数据进行降维处理,输出M维数据;其中N大于M,且M和N为正整数;
将所述M维数据输入分类网络;
利用所述分类网络对所述M维数据进行判别,输出所述自动驾驶仿真结果对应的驾驶状态。
在一种实施方式中,所述三元组深度网络是通过如下方式训练的:
获取各自动驾驶场景包括的正类数据、负类数据和专家数据;
利用正类数据、负类数据和专家数据,训练得到所述三元组深度网络,确定所述三元组深度网络的每一层的权值矩阵,所述三元组深度网络的损失函数为余弦损失函数。
在一种实施方式中,所述分类网络是通过如下方式训练的:
获取各类别对应的训练样本,所述训练样本中包括类别标签;
利用各类别对应的训练样本,训练得到softMax多分类网络,确定所述softMax多分类网络的每一层的权值矩阵,所述softMax多分类网络的损失函数为交叉熵损失函数。
在一种实施方式中,利用三元组深度网络对所述N维数据进行降维处理,输出M维数据,包括:
利用三元组深度网络的权值矩阵对所述N维数据进行降维处理,输出M维数据。
在一种实施方式中,利用所述分类网络对所述M维数据进行判别,输出所述自动驾驶仿真结果对应的驾驶状态,包括:
利用所述分类网络的权值矩阵对所述M维数据进行判别,输出所述M维数据的类别标签,根据所述M维数据的类别标签得到所述自动驾驶仿真结果对应的驾驶状态。
在一种实施方式中,所述驾驶状态包括变道状态、变速状态、体感状态、超车状态中的至少一项。
第二方面,本发明实施例提供了一种自动驾驶状态判别装置,包括:
第一网络输入模块,用于将自动驾驶仿真结果包括的N维数据输入三元组深度网络;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百度在线网络技术(北京)有限公司,未经百度在线网络技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811228611.6/2.html,转载请声明来源钻瓜专利网。