[发明专利]一种应用于红外火焰识别的自组织TS型模糊网络建模方法有效
申请号: | 201811080145.1 | 申请日: | 2018-09-17 |
公开(公告)号: | CN109272037B | 公开(公告)日: | 2020-10-09 |
发明(设计)人: | 谢林柏;温子腾;谭勇;冯宏伟 | 申请(专利权)人: | 江南大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G01J5/00 |
代理公司: | 苏州市中南伟业知识产权代理事务所(普通合伙) 32257 | 代理人: | 殷海霞;查杰 |
地址: | 214122 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 应用于 红外 火焰 识别 组织 ts 模糊 网络 建模 方法 | ||
本申请公开了一种应用于红外火焰识别的自组织TS型模糊网络建模方法,包括如下步骤:(1)采集不同火焰、干扰源的时域信号数据,并对时域信号数据进行预处理,得到频域信号数据;(2)对波形的时域、频域信号数据进行特征信息的提取,获得火焰的特征向量,组成样本集;(3)将样本集划分为训练集、验证集和测试集;(4)搭建TS‑RBF模糊神经网络;(5)设定TS‑RBF模糊神经网络参数初始值,利用训练集的样本对TS‑RBF模糊神经网络进行训练,进行结构、参数学习;(6)利用验证集对训练好的TS‑RBF模糊神经网络进行验证及模型选择;(7)将测试集输入训练好的TS‑RBF模糊神经网络中,其结果作为对模型的最终评价。
技术领域
本发明属于红外火焰识别技术领域,具体涉及一种应用于红外火焰识别的自组织TS型模糊网络建模方法。
背景技术
基于红外热释电传感器的火焰探测器广泛应用于现代工业碳氢化合物的火焰检测中,是工业生产系统自动运行的重要组成部分和必要的安全装置。碳氢类火焰被二氧化碳吸收后辐射的红外光的波长在频谱中相对固定,但是相应的采样信号可能会受到其它干扰源的影响,这些干扰源的信号可以在频谱的其它波段被探测到。总体上说,火焰探测器中不同波段的传感器对于火源和干扰源的敏感度不同,所以可以通过多种方法可靠地区分火焰和干扰源。
在过去的几十年里,已经开发出了一些方法,如相关性、周期性检查、取比值、频率分析和阈值交叉等方式,以检测和辨别火焰和非火焰干扰。然而,火焰与非火焰干扰的分离是一个非常复杂的检测过程,尤其是使用多个探测波段不同的传感器,很难在样本数据中通过经验提取和建立变量之间的内在隐含联系。这导致了火焰与非火焰干扰线性分离的困难。为了解决这一问题,提高识别率,采用非线性模式识别方法,如应用模糊神经网络,对不精确、不完整的数据进行分析。众所周知,模糊神经网络融合了模糊系统和神经网络这两种强大方法的优点,通过模糊规则为神经网络提供模型解释性,同时神经网络的训练方式也为模糊系统提供了有效的参数辨识方法。在现有的模糊建模方法中,TS模糊推理可以利用一系列模糊规则生成复杂的非线性关系,有效地解决了高维系统建模问题中时常发生的规则灾难。近年来,RBF神经网络融合TS模糊模型具有结构相对简单,较好的局部逼近能力、可解性和函数等价性等优点。然而,针对二分类问题,如果使用多传感器构建新一代火灾探测系统,传统融合TS模型的RBF神经网络存在以下不足之处:
1.如何学习并确定TS-RBF模型的结构,传统的TS-RBF模型通常采用试错法来确定模型的结构,但是固定的模型结构很难在复杂多变的工业环境中取得理想的识别效果。因此,选择合适的模糊规则数目对整个模糊神经网络的性能尤为重要。如果模糊规则的数量过大,系统的逻辑关系就会过大,计算量就会呈指数增长。如果模糊规则的数量不足,网络表现力将极为有限的。
2.仅仅通过梯度下降法学习模型参数,会导致代价函数容易陷入局部最优点,从而限制模型的拟合能力。
3.在实际的工业应用中存在多种故障,例如:当出现设备老化导致的性能下降,在信号采样和处理的过程中导致数据失真甚至是数据丢失,这可能会导致采样数据中存在一些异常值。不幸的是,为了提高模型的泛化能力,大多数现有的方法都在RBF-NN中加入了去模糊化,这会导致在抑制离群点输出时出现困难。离群点是火焰探测器误报警的主要原因之一,除去故障因素在正常工作环境下也有可能产生少量离群点,但是其连续出现的频率大大低于故障引起的离群点。在目前的大多数方法中,故障不能与正常工作状态区分开来,换句话说,1型模糊集不能很好地处理不确定性问题。
发明内容
本发明旨在提供一种应用于红外火焰识别的自组织TS型模糊网络建模方法。首先,为了抑制由故障引起的离群点的输出,使其能够区别于正常工作状态,我们在模糊系统的前件网络的模糊规则适应度增加了一个偏置。其次,提出了一种不需要任何先验知识的自组织模型结构学习方法,能够有效增加、裁剪节点。最后,设计了一种自适应学习算法,用于克服梯度下降学习中的局部最优问题。
本发明的技术方案:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811080145.1/2.html,转载请声明来源钻瓜专利网。