[发明专利]基于车载激光雷达的车道线识别方法有效
申请号: | 201810408882.3 | 申请日: | 2018-05-02 |
公开(公告)号: | CN108845315B | 公开(公告)日: | 2022-02-08 |
发明(设计)人: | 李桐;刘扬;陈得丰;杨智斌;耿洪碧;李欢;任帅 | 申请(专利权)人: | 国家电网公司;国网辽宁省电力有限公司电力科学研究院 |
主分类号: | G01S13/88 | 分类号: | G01S13/88;G01S13/91;G06V20/56 |
代理公司: | 沈阳智龙专利事务所(普通合伙) 21115 | 代理人: | 宋铁军 |
地址: | 100031 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 车载 激光雷达 车道 识别 方法 | ||
本发明属于自动驾驶的模式识别领域,涉及一种基于车载激光雷达的车道线识别方法,步骤如下:一、读取curb中间的道路点云数据,二、排序,三、均值滤波,四、寻找峰值,五、车道线高度信息筛选,六、多线束联合筛选峰值。将自车前方和后方的车道线识别出来。本方法解决了传统相机在夜晚、雾天等光照条件不好的情况下无法识别车道线的问题。
技术领域
本发明属于自动驾驶的模式识别领域,涉及激光雷达点云数据处理及识别方法。
背景技术
车道线检测在智能车辆辅助安全系统中起着关键的作用,车道偏离警示系统在车道保持辅助系统以及车道换道辅助系统中有着广泛的应用;同时车道线检测是智能车自动导航系统的基础,车辆自动导航的最优行驶路径需要根据已获取的道路环境信息进行规划,车道线检测在具体的车道行驶中是非常重要的。
车道线检测的基本原理是使用传感器获取道路以及周边环境信息,然后经过复杂的分析获取车道线所在的具体位置,最终在车辆自主导航系统和智能车辆辅助安全系统中发挥作用。目前,车道线检测方法有三种:分别是基于雷达的车道线检测、基于视觉的车道线检测和雷达与视觉相结合的车道线检测。目前基于视觉的车道线检测技术已经比较成熟,它是通过相机获取道路信息,通过直接利用道路的视觉特征,这种方式有着很快的处理速度,因此被广泛的应用;但相机本身有个很大的缺陷就是易受外界环境的影响。由于雷达技术的发展使其具有及其不容易受外界环境的影响这一优势,基于雷达的车道线检测成为了研究热点。目前使用在车道线检测上的雷达主要是激光雷达和毫米波雷达,因为激光雷达有着强大的抗外界干扰能力和高分辨率优势,因此被广泛使用。激光雷达分为单线激光雷达、多线激光雷达和三维全向激光雷达。其中因为多线激光雷达探测距离更远、检测精确度更高、扫描范围更广并且返回信息量更大;三维全向激光雷达价格过高而备受青睐。
发明内容
发明目的
本发明使用激光雷达传感器做车道线识别,解决了传统相机在夜晚、雾天等光照条件不好的情况下无法识别车道线的问题。
技术方案
一种基于车载激光雷达的车道线识别方法,其特征在于:步骤如下:
一、读取curb中间的道路点云数据:
使用32线激光雷达传感器,将此传感器竖直的安装在自车的车顶,以获取道路及其周围的环境点云数据;
(1)使用最小二乘算法分别拟合左、右curb的函数关系式yl=alxl+bl和yr=arxr+br,其中yl代表左边curb点云的纵坐标值,xl代表左边curb点云的横坐标值,al为左边curb函数式的系数,bl为左边curb函数式的截距,yr代表右边curb点云的纵坐标值,xr代表右边curb点云的横坐标值,ar为右边curb函数式的系数,br为右边curb函数式的截距;
(2)根据左、右curb的函数关系式yl=alxl+bl和yr=arxr+br使用Visual Studio平台中的C++编程提取curb中间的道路点云数据(x1,y1),(x2,y2)...(xn,yn),其中n代表提取的点云个数,为后续识别车道线做准备;
(3)取由激光雷达的1-22线束获取的点云数据;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家电网公司;国网辽宁省电力有限公司电力科学研究院,未经国家电网公司;国网辽宁省电力有限公司电力科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810408882.3/2.html,转载请声明来源钻瓜专利网。