[发明专利]基于视觉清晰度与轮廓提取的熔池图像异常检测方法有效

专利信息
申请号: 201810040219.2 申请日: 2018-01-16
公开(公告)号: CN108320280B 公开(公告)日: 2022-03-15
发明(设计)人: 韩静;徐林丽;赵壮;张玉伟;王霄雯;柏连发;张毅;张楚昊 申请(专利权)人: 南京理工大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T7/13;G06T7/136;G06T7/194
代理公司: 南京苏创专利代理事务所(普通合伙) 32273 代理人: 张学彪
地址: 210094 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 视觉 清晰度 轮廓 提取 熔池 图像 异常 检测 方法
【说明书】:

专利提出了一种根据视觉清晰度的值与轮廓的宽度的变化从而判别该熔池图像所属异常类别的检测方法;本专利从图像视觉角度出发,结合清晰度以及轮廓提取的运算特性,先用清晰度算子进行初分类,再结合轮廓宽度对焊速进行再分类,在一定程度上减小了运算时间。且本专利所采用双光路视觉感知装置,有效的提高视觉轮廓和清晰度提取精度。

技术领域

本发明属于熔池视觉领域,具体涉及FPGA模块触发的双光路视觉传感装置和一种清晰度以及轮廓协同判断的熔池图像异常检测方法。

背景技术

焊接是制造业重要的加工工艺方法之一,广泛地应用于材料加工和结构制造中。熟练焊工可以通过观察熔池表面信息结合经验对焊缝质量进行预判和控制,随着智能机器人焊接逐渐取代人工焊,熔池信息的准确传感是焊接过程智能化控制的重要前提,需要建立稳定可靠的视觉传感系统保证获取的熔池图像信息尽可能全面、准确。

熔池二维视觉传感主要通过视觉传感方法对熔池进行图像传感采集,通过图像处理和特征提取,分析图像特征与焊接质量之间的关系并建立控制模型。随着研究的不断深入,研究者结合不同材料、不同焊接方法中熔池的特点建立合理的视觉传感系统,在熔池图像传感方法、图像处理算法、图像特征定义和提取方法和基于视觉的焊接质量控制等方面取得了较大进展。熔池信息的准确传感是焊接过程智能化控制的重要前提,需要建立稳定可靠的视觉传感系统保证获取的熔池图像信息尽可能全面、准确。如果直接利用视觉传感器摄取焊接过程中的熔池图像,强烈的电弧光将使CCD的感光基元达到光饱和,熔池信息几乎完全被电弧光湮没。

为削弱电弧光的影响,本专利采用熔池视觉与工艺参数协同感知装置,针对基于清晰度以及轮廓提取的视觉计算需求,设计成像方案。由于计算熔池轮廓需要较强的边界对比度,需要带通高曝光;计算熔池表面视觉清晰度需要抑制弧光,需要高通低曝,因此本专利采用分光棱镜将熔池光束分为850nm高通和650nm带通的双光路视觉传感装置。如此可兼得高对比度的熔池边界和低弧光干扰的熔池表面信息,提高了后续熔池轮廓提取和清晰度计算精度。获得图像后,为了减少各种随机噪声和图像畸变影响,本专利采用中频拉伸的方法再对图像进行预处理,抑制无用噪声信息,改善图像质量,便于清晰度的计算与轮廓提取。

发明内容

本发明基于视觉清晰度与轮廓提取的熔池图像异常检测方法,包括以下步骤:

步骤1:确定熔池图像可能出现的异常类别;

步骤2:设计工艺参数协同感知FPGA模块,根据不同视觉计算需求,设计针对性成像方案;

步骤3:对步骤2设计的光路采集正样本和各类负样本;

步骤4:对采集的所有熔池图像样本进行中频拉伸处理并计算其清晰度值,根据结果分布,设定划分各类异常组的阈值,确定电流参数异常,电压参数异常以及保护气参数异常的清晰度范围;

步骤5:将步骤4所得结果中电参数和保护气参数一致情况下的正常组进行轮廓特征信息的提取,进行数据分析从而得到不同焊速等级的分类结果,实现熔池焊速异常的检测。

更进一步的,步骤2所述的根据不同视觉计算需求,设计针对性成像方案,具体过程为:如计算熔池轮廓需要较强的边界对比度,可采用带通高曝光;计算熔池表面视觉清晰度需要抑制弧光,可采用高通低曝光;因此采用分光棱镜将熔池光束分为两束,一束采用850nm高通、一束采用650nm带通,形成双光谱视觉传感装置;且确保双光谱采样同步。

更进一步的,步骤4所述的对采集的所有熔池图像样本进行中频拉伸处理并计算其清晰度值,包括以下步骤:

步骤3-1:对所获得的熔池图像进行中频拉伸的预处理,提取图像中较为重要的细节分量;

中频分量拉伸公式如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810040219.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top