[发明专利]基于深度学习的高分辨率遥感影像城市道路提取方法有效

专利信息
申请号: 201810029148.6 申请日: 2018-01-12
公开(公告)号: CN108256464B 公开(公告)日: 2020-08-11
发明(设计)人: 刘建明;杨晓冬;王楠;张艺译 申请(专利权)人: 适普远景遥感信息技术(北京)有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 100029 北京市朝*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 高分辨率 遥感 影像 城市道路 提取 方法
【权利要求书】:

1.基于深度学习的高分辨率遥感影像城市道路提取方法,其特征在于,包括以下步骤:

步骤一、构建训练数据集:选择若干高分辨率遥感影像图片,随机分为训练数据集和验证数据集;将训练数据集中包含道路的图片标记为正样本,不包含道路的图片标记为负样本;

步骤二、构建SSD神经网络模型:搭建SSD神经网络模型训练框架,将标注后的训练数据集输入到SSD神经网络模型中进行迭代训练,得到初始城市道路分类模型和参数;

步骤三、建立辐射特征损失函数:

其中,λ表示设定的常量,l为预测框,w当前预测框辐射值,gw表示当前像素值与预测框内像素均值的比值,x为当前点像素值,y为当前点辐射值,取值{0,1};

步骤四、建立几何特征损失函数:

其中,w表示像素点紧致度,取值(0,1],C为该点距预测框左侧距离值,m为该点距预测框上边框距离值,x、y为该点坐标值,T为设定的阈值;所述像素点紧致度w的计算公式为:

其中,Area为区域面积,p为区域周长;

步骤五、利用训练数据集对步骤二得到的初始城市道路分类模型进行迭代训练,训练过程中使用步骤三和步骤四建立的损失函数对模型进行评价,改进模型参数,得到优化的城市道路分类模型;利用优化的城市道路分类模型对验证数据集进行检测;

步骤六、使用优化的城市道路分类模型对待处理的高分辨率遥感影像进行处理,输出城市道路数据。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于适普远景遥感信息技术(北京)有限公司,未经适普远景遥感信息技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810029148.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top