[发明专利]一种交通信号灯车道级控制关系提取方法及装置在审
申请号: | 201711269558.X | 申请日: | 2017-12-05 |
公开(公告)号: | CN107992829A | 公开(公告)日: | 2018-05-04 |
发明(设计)人: | 罗跃军;王卫宾 | 申请(专利权)人: | 武汉中海庭数据技术有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 武汉蓝宝石专利代理事务所(特殊普通合伙)42242 | 代理人: | 常海涛 |
地址: | 430000 湖北省武汉市*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 交通 信号灯 车道 控制 关系 提取 方法 装置 | ||
1.一种交通信号灯车道级控制关系提取方法,其特征在于,包括以下步骤:
步骤1,采集前进方向道路路口的激光点云数据和高清实景图像数据,并基于数据融合技术,对所述激光点云数据和所述高清实景图像数据进行位置匹配;
步骤2,基于图像语义分割技术从激光点云中自动检测交通信号灯,提取交通信号灯的边界轮廓坐标;从高清实景图像数据中提取所述边界轮廓坐标内的交通信号灯图像的特征信息,判断所述交通信号灯的类型;
步骤3,根据所述交通信号灯的类型将所述交通信号灯与相应的车道匹配,得到所述交通信号灯的车道级控制关系。
2.根据权利要求1所述一种交通信号灯车道级控制关系提取方法,其特征在于,所述步骤2还包括从所述激光点云数据中提取车道边界,从高清实景图像数据中提取地面标识的车道转向信息。
3.根据权利要求2所述一种交通信号灯车道级控制关系提取方法,其特征在于,步骤2中所述的从高清实景图像数据中提取所述边界轮廓坐标内的交通信号灯图像的特征信息,判断所述交通信号灯的类型,包括:
根据所述交通信号灯的边界轮廓坐标,从高清实景图像数据中提取所述交通信号灯图像并分析获取所述交通信号灯的特征信息,基于深度学习方法将所述特征信息与标准信号灯模型特征信息做比对,判断所述交通信号灯是否为机动车信号灯或方向指示灯。
4.根据权利要求3所述一种交通信号灯车道级控制关系提取方法,其特征在于,所述步骤3包括:
若所述交通信号灯为机动车信号灯,则将所述交通信号灯与各个车道进行关联,得到所述交通信号灯的车道级控制关系;
若所述交通信号灯为方向指示灯,则根据所述车道转向信息,将所述交通信号灯与相应的车道关联,得到所述交通信号灯的车道级控制关系。
5.一种交通信号灯车道级控制关系提取装置,其特征在于,包括:
数据采集及融合模块,用于采集前进方向道路路口的激光点云数据和高清实景图像数据,并基于数据融合技术,对所述激光点云数据和所述高清实景图像数据进行位置匹配;
类型判断模块,用于基于图像语义分割技术从激光点云中自动检测交通信号灯,提取交通信号灯的边界轮廓坐标;从高清实景图像数据中提取所述边界轮廓坐标内的交通信号灯图像的特征信息,判断所述交通信号灯的类型;
匹配模块,用于根据所述交通信号灯的类型将所述交通信号灯与相应的车道匹配,得到所述交通信号灯的车道级控制关系。
6.根据权利要求5所述一种交通信号灯车道级控制关系提取装置,其特征在于,所述类型判断模块还用于从所述激光点云数据中提取车道边界,从高清实景图像数据中提取地面标识的车道转向信息。
7.根据权利要求6所述一种交通信号灯车道级控制关系提取装置,其特征在于,所述的从高清实景图像数据中提取所述边界轮廓坐标内的交通信号灯图像的特征信息,判断所述交通信号灯的类型,包括:
根据所述交通信号灯的边界轮廓坐标,从高清实景图像数据中提取所述交通信号灯图像并分析获取所述交通信号灯的特征信息,基于深度学习方法将所述特征信息与标准信号灯模型特征信息做比对,判断所述交通信号灯是否为机动车信号灯或方向指示灯。
8.根据权利要求7所述一种交通信号灯车道级控制关系提取装置,其特征在于,所述匹配模块具体用于:
若所述交通信号灯为机动车信号灯,则将所述交通信号灯与各个车道进行关联,得到所述交通信号灯的车道级控制关系;
若所述交通信号灯为方向指示灯,则根据所述车道转向信息,将所述交通信号灯与相应的车道关联,得到所述交通信号灯的车道级控制关系。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉中海庭数据技术有限公司,未经武汉中海庭数据技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711269558.X/1.html,转载请声明来源钻瓜专利网。