[发明专利]基于深度学习网络的早产检测方法有效

专利信息
申请号: 201711216221.2 申请日: 2017-11-28
公开(公告)号: CN109614840B 公开(公告)日: 2022-03-18
发明(设计)人: 陈里里;郝亚如;曹浩;司吉兵 申请(专利权)人: 重庆交通大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;A61B5/389;A61B5/00
代理公司: 北京海虹嘉诚知识产权代理有限公司 11129 代理人: 吕小琴
地址: 400074 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 网络 早产 检测 方法
【说明书】:

发明提供的一种基于深度学习网络的早产检测方法,包括采集正常孕妇的体表子宫肌电信号并转换成数字信号;从子宫肌电数字信号中筛选出爆发波片段,对爆发波片段中分割出3000个子宫肌电信号样本,对子宫肌电信号样本进行3层离散小波分解,提取出表征子宫肌电信号样本的特征向量;构建训练集和测试集;将妊娠期样本特征向量分娩期样本特征向量进行标签设定;构建堆栈稀疏自编码深度学习网络,将训练集输入到堆栈稀疏自编码器中进行训练,提取出早产数据的高层次特征H;采集待检孕妇的体表子宫肌电信号并转换成数字信号,提取出待检孕妇子宫肌电信号样本的特征向量并输入到堆栈稀疏自编码深度学习网络中进行早产预测分析;能够准确预测早产且无创伤。

技术领域

本发明涉及一种检测方法,尤其涉及一种基于深度学习网络的早产检测方法。

背景技术

近年来,随着环境污染加剧、高龄产妇生育二胎和试管婴儿的增多以及促排卵药物的滥用,我国早产儿发生率呈逐年上升趋势,在医学上,把妊娠满28周至不足37周间分娩的新生儿称为早产儿,据不完全统计,我国每年约有180万名早产儿出生,占全部新生儿的10%,为全球早产儿数量第二多的国家。每年五岁以下儿童死亡中近45%为新生儿,其中早产是新生儿死亡的首要原因;那么如何对早产进行准确性检测一直以来是本领域的一种重要的难题。

现有技术中,国内外学者针对早产预测已经展开了大量的研究工作,主要包括基于生化指标、基于感染免疫指标、基于生物物理指标、基于分娩压力计、基于宫内压力计等技术来进行早产检测,其中,基于生化、感染免疫、生物物理等指标的检测方法都具有侵入性,容易引起感染,并且测量值易受主观影响的特点,而基于分娩压力计的检测方法需要将皮带缠在孕妇腹部,不仅会使孕妇感到不舒适,而且检测结果同样不准确;基于宫内压力计的检测方法是有创的,属于侵入式测量,操作稍有不慎将极有可能引起感染。

因此,为了解决上述技术问题,亟需提出一种新的早产检测方法。

发明内容

有鉴于此,本发明的目的是提供一种基于深度学习网络的早产检测方法,无需对孕妇造成创伤,能够有效避免侵入式检测方法为孕妇带来感染的风险,确保孕妇及胎儿的安全,并且在检测过程中能够精确表征孕妇的子宫肌特性,算法过程响应速度快、稳定性好,精度高,为精确判定是否存在早产可能性提供有效保障。

本发明提供的一种基于深度学习网络的早产检测方法,包括如下步骤:

S1.采集正常孕妇的体表子宫肌电信号并转换成数字信号;

S2.从子宫肌数字信号中筛选出爆发波片段,对爆发波片段中分割出3000个子宫肌电信号样本,且每个样本包含16个时间序列且每个时间序列长度为4096点;其中,3000个子宫肌电信号样本包括1500个妊娠期样本和1500个分娩期样本;

S3.对子宫肌电信号样本进行离散小波分解,提取出尺度3近似系数、尺度3细节系数、尺度2细节系数和尺度1细节系数;并计算尺度3近似系数、尺度3细节系数、尺度2细节系数和尺度1细节系数的样本熵值作为样本特征值,并由样本特征值组成表征子宫肌电信号样本的特征向量;

S4.选出1000个妊娠期样本特征向量和1000个分娩期样本特征向量组成训练集,将剩余的500个妊娠期样本特征向量和500个分娩期样本特征向量组成测试集;

将妊娠期样本特征向量进行标签设定并设定为1,将分娩期样本特征向量进行标签设定并设定为2;

构建堆栈稀疏自编码深度学习网络,将训练集输入到堆栈稀疏自编码器中进行训练,提取出早产数据的高层次特征H;

S5.采集待检孕妇的体表子宫肌电信号并转换成数字信号,并执行步骤S2至步骤S3,提取出待检孕妇子宫肌电信号样本的特征向量并输入到堆栈稀疏自编码深度学习网络中进行早产预测分析。

进一步,根据如下方法提取出高层次特征H:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆交通大学,未经重庆交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711216221.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top