[发明专利]一种减少图像标签融合冗余计算的方法有效

专利信息
申请号: 201710962059.2 申请日: 2017-10-16
公开(公告)号: CN107798680B 公开(公告)日: 2020-09-22
发明(设计)人: 颜成钢;赵崇宇;黄海亮;付祖贤;张腾 申请(专利权)人: 杭州电子科技大学
主分类号: G06T7/10 分类号: G06T7/10
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱月芬
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 减少 图像 标签 融合 冗余 计算 方法
【说明书】:

发明公开了一种减少图像标签融合冗余计算的方法。本发明的方法是利用GPU多线程并行计算,整体上提取目标图像和多图谱图像的灰度特征,再建立一个从目标图像的灰度特征到多图谱图像的灰度特征的映射地图,通过映射地图寻找每个点匹配到的多图谱点集和对应的标签集,接着用欧氏距离计算匹配到的点集处的权重值,然后统计可能匹配的每个标签值的权重,找到目标图像每个点处对应权重值总和最大的标签值,最后得到带标签的分割图像。本发明所述的方法能够保证在不改变原有算法的分割精度的条件下,根据GPU多线程并行计算的特点,通过改为适用于GPU多线程的计算方式,来减少标签融合时的冗余计算,提高医学图像的分割效率。

技术领域

本发明属于医学图像分割技术领域,具体涉及对图像进行标签融合时,减少其中冗余计算的方法。

技术背景

随着生物成像技术的快速发展以及现代计算机存储能力和计算能力的不断提升,近年来,医学影像分析已经逐渐成为一个非常重要的研究方向。各种各样的成像技术,如计算机断层扫描(CT)、磁共振成像(MRI)等,已广泛地应用于病理检测,脑组织分析,临床诊断等各个方面,为人类的健康做出了巨大的贡献,而其中医学图像的分割,作为一项关键技术,扮演着非常重要的角色。

图像分割就是把图像分成若干个特定的、具有独特性质的区域或者说分离出感兴趣的区域的技术和过程。在临床上,通过观察分割出来的各个功能区域图像,可以更好地来诊断或预测疾病的发生。

近些年来,基于多图谱的图像分割方法在实际应用中取得了很大的成功。它在原有的单幅图像的基础上,发展形成了利用多幅图像配准并进行标签传播的基本框架。简单的说,图谱就是一个模板,包括图像与图像的标签。多图谱分割过程:(1)将每一幅模板图谱匹配到目标图像,并相应的将模板的标签传播到目标图像作为它的一个分割;(2)将得到的所有分割以一定的方法进行组合进而得到最终的标签。

现有的医学图像分割方法主要集中在目标图像上每一点与多图谱上点集的映射关系。如果单单从算法本身出发,对目标图像上的一个处理点,就要进行一次多图谱的匹配点集的搜索,再用程序来实现,这是可行的,但是计算中存在很多冗余,增加了CPU的负担和分割的时间。随着CUDA并行计算框架的推出,让用GPU来处理海量数据并行计算成为了可能。因此,利用GPU来并行处理医学图像的分割将会更加高效,将减少原本程序设计中的冗余计算,提高了分割效率。

发明内容

本发明提出一种利用GPU多线程并行计算来减少图像标签融合冗余计算的方法。该方法可以提高医学图像分割的效率。

本发明的方法是利用GPU多线程并行计算,整体上提取目标图像和多图谱图像的灰度特征,再建立一个从目标图像的灰度特征到多图谱图像的灰度特征的映射地图,通过映射地图寻找每个点匹配到的多图谱点集和对应的标签集,接着用欧氏距离计算匹配到的点集处的权重值,然后统计可能匹配的每个标签值的权重,找到目标图像每个点处对应权重值总和最大的标签值,最后得到带标签的分割图像。

本发明解决其技术问题所采用的技术方案具体包括以下步骤:

步骤(1):读取待分割目标图像的灰度图、多个模板图谱的灰度图以及相对应已分割的标签图;根据模板图谱的标签信息,建立一张标记目标图像待处理点位置信息的三维地图,并通过搜索所有目标图像待处理点附近的领域,统计并建立一张标记模板图谱的待处理点位置信息的三维地图。

具体的:

1-1.从N个模板图谱中选取一个模板图谱的灰度图作为待分割目标图像;

1-2.再从剩余的N-1个模板图谱中选取选出n个模板图谱用作模板;

1-3.将待分割目标图像的灰度图、选出的n个模板图谱读入到计算机内存中;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710962059.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top