[发明专利]一种卷积神经网络运算指令及其方法有效
申请号: | 201710903509.0 | 申请日: | 2016-04-29 |
公开(公告)号: | CN107704267B | 公开(公告)日: | 2020-05-08 |
发明(设计)人: | 陈天石;韩栋;陈云霁;刘少礼;郭崎 | 申请(专利权)人: | 中科寒武纪科技股份有限公司 |
主分类号: | G06F9/30 | 分类号: | G06F9/30;G06F9/38;G06N3/063;G06N3/04 |
代理公司: | 广州三环专利商标代理有限公司 44202 | 代理人: | 郝传鑫;熊永强 |
地址: | 100000 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 卷积 神经网络 运算 指令 及其 方法 | ||
本披露提供了一种卷积神经网络运算指令及其方法,其中卷积神经网络运算指令,所述卷积神经网络运算指令包括:至少1个操作码和至少1个操作域,其中,所述操作码用于指示所述卷积神经网络运算指令的功能,所述操作域用于指示所述卷积神经网络运算指令的数据信息;所述数据信息包括:立即数或寄存器号,具体包括:输入数据的起始地址和数据长度,卷积核的起始地址和数据长度,以及激活函数的类型。将输出数据作为下一层的输入数据。
技术领域
本披露总体上涉及人工神经网络,具体地涉及一种卷积神经网络运算指令及其方法。
背景技术
卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强、平移、旋转、缩放等特点。由于CNN/DNN的特征检测层通过训练数据进行学习,所以在使用CNN/DNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。
在已有的计算机领域应用中,与卷积运算相关的应用十分普遍。本披露专注于卷积神经网络,目前可以执行此种运算的主流装置如下:
在现有技术中,一种进行卷积神经网络运算的已知方案是使用通用处理器,该方法通过通用寄存器堆和通用功能部件来执行通用指令,从而执行卷积神经网络运算。然而,该方法的缺点之一是单个通用处理器多用于标量计算,在进行卷积神经网络运算时运算性能较低。而使用多个通用处理器并行执行时,通用处理器之间的相互通讯又有可能成为性能瓶颈。
在另一种现有技术中,使用图形处理器(GPU)来进行向量计算,其中,通过使用通用寄存器堆和通用流处理单元执行通用SIMD指令来进行卷积神经网络运算。然而,上述方案中,GPU片上缓存太小,在进行大规模卷积神经网络运算时需要不断进行片外数据搬运,片外带宽成为了主要性能瓶颈。
发明内容
(一)要解决的技术问题
本披露的目的在于,提供一种支持卷积神经网络的装置,解决现有技术中存在的受限于片间通讯、片上缓存不够等问题。
(二)技术方案
本披露的一个方面提供了一种卷积神经网络运算指令,所述卷积神经网络运算指令包括:至少1个操作码和至少1个操作域,其中,
所述操作码用于指示所述卷积神经网络运算指令的功能,所述操作域用于指示所述卷积神经网络运算指令的数据信息;
所述数据信息包括:立即数或寄存器号,具体包括:输入数据的起始地址和数据长度,卷积核的起始地址和数据长度,以及激活函数的类型。
可选的,所述卷积神经网络运算指令包括:COMPUTE指令、CONFIG指令、IO指令、NOP指令、JUMP指令和MOVE指令。
可选的,所述COMPUTE指令包括:卷积神经网络sigmoid指令、卷积神经网络TanH指令、卷积神经网络ReLU指令以及卷积神经网络group指令;
所述卷积神经网络sigmoid指令,用于在装置分别从存储器的指定地址取出指定大小的输入数据和卷积核,在卷积运算部件中做卷积操作,然后根据所述sigmoid指令将输出结果做sigmoid激活;
所述卷积神经网络TanH指令,用于在装置分别从存储器的指定地址取出指定大小的输入数据和卷积核,在卷积运算部件中做卷积操作,然后根据所述TanH指令将输出结果做TanH激活;
所述卷积神经网络ReLU指令,用于在装置分别从存储器的指定地址取出指定大小的输入数据和卷积核,在卷积运算部件中做卷积操作,然后根据所述ReLU指令将输出结果做ReLU激活;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中科寒武纪科技股份有限公司,未经中科寒武纪科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710903509.0/2.html,转载请声明来源钻瓜专利网。