[发明专利]受限条件下的轨迹更新综合预测迭代学习控制算法有效

专利信息
申请号: 201710272144.6 申请日: 2017-04-24
公开(公告)号: CN106933105B 公开(公告)日: 2019-07-26
发明(设计)人: 窦珊;王凌锋;熊智华;洪英东 申请(专利权)人: 清华大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 张润
地址: 10008*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 受限 条件下 轨迹 更新 综合 预测 学习 控制 算法
【权利要求书】:

1.一种受限条件下的轨迹更新综合预测迭代学习控制算法,其特征在于,包括以下步骤:

S1,设置一个批次生产的数据采集和存储环节,所述环节可以利用生产企业现有的工业控制计算机、PLC设备;

S2,根据采集到的生产历史数据库中以往的生产过程数据,在进行数据预处理后建立生产过程的数学模型和输入输出约束条件;

S3,数据采集环节采集得到工业生产线中产品加工的输入输出数据,并根据目标跟踪轨迹计算点对点跟踪误差曲线;

S4,依据S3得到的跟踪误差,采用轨迹更新算法调整目标跟踪轨迹,并计算出输入输出受约束情况下的跟踪轨迹,采用综合预测迭代学习控制算法,并计算下一批次的实时控制量;

S5,在每个批次的新采样点,实施S4,直至该批次结束,实现对输出目标轨迹的有效跟踪。

2.如权利要求1所述的算法,其特征在于,所述S2中,建立数学模型的过程如下:

S21,采集生产过程数据预处理过程如下:

假定某时刻输入样本集U=(u1,u2,...,um)T∈Rm,表示m个监测传感器在某个时刻的历史数据,m表示监测传感器的个数,Rm表示m维列向量;uj表示在样本U中,第j个传感器数据的单个样本数据值,j=1,2,...,m;该时刻的输出样本集为Y=(y1,y2,...,yn)T∈Rn,表示n个监测传感器在某个时刻的历史数据,n表示监测传感器的个数,Rn表示n维列向量;yj表示在样本Y中,第j个传感器数据的单个样本数据值,j=1,2,...,n,假设采取N组历史数据,得到的输入数据总样本集如下:Qu={U1,...,Um},输入数据总样本集为:Qy={Y1,...,Ym},分别求得输入输出数据集的均值和方差,按照设定的数据限剔除不符合要求的样本点,最终得到数据样本集Q;

S22,建立数学模型,假定过程模型能用以下的离散方程表示:

(t)+a1·y(t-1)+...+ap·y(t-p)=b1·u(t-1)+...+bq·u(t-q)+v(t) (1)

将所述数据样本集Q中的数据分别代入离散方程的两端,采用最小二乘等适当方法取得离散方程中参数的近似值并找到离散方程的状态空间实现,以此作为间歇过程的数学模型,其得到的近似状态空间模型为:

其中,t和k分别代表采样时间和运行批次,t∈[0,N],N为每个批次采样点数,A、B、C分别为相应的系统参数矩阵,d代表过程干扰和测量噪声;其跟踪目标为ydM=[yd(1),yd(2)…,yd(M)],其中M≤N,则其跟踪误差为

ekM=ydM-Ψyk (3)

其中,对于(2)描述的状态空间模型,可以将其改写为Lifted Model形式,写为:

其中,Y(k),U(k)和V(k)分别表示第k批次的输出向量、控制向量和干扰向量;G为N×N方阵,具体定义如下:

由假设CB≠0,易知G是非奇异的方阵;

对于输入的约束,包括直接的输入大小的约束,输入在时间和批次方向变化的约束;

对于输入大小的约束,可以表示为:

Ulow≤U(k)≤Uhi (6)

对于批次方向上输入变化率的约束,可以表示为:

ΔUlow≤ΔU(k)≤ΔUhi (7)

其中,ΔU(k)=U(k)-U(k-1)对于时间方向上输入的变化率的约束,可以表示为:

δUlow≤δU(k)≤δUhi (8)

其中,δU(k)=[u(0),u(2,k)-u(1,k),...,u(N-1,k)-u(N-2,k)];

对于上述的三种输入约束,定义时间方向的单步梯度矩阵为J

对于(8),也可以把它写成关于ΔU(k)的约束:

Ulow-U(k-1)≤ΔU(k)≤Uhi-U(k-1) (10)

输入的三种形式的约束可以统一成关于批次间输入变化率的约束,即

将第一项和第三项约束可以合并,取

则(11)可以描述为:

公式(13)描述的输入约束构成的集合为一个凸集,将这个集合记Ω1

对输出的约束,引入惩罚因子项,把它写成一个软约束的形式:

ylowk+1≤Y(k)≤yhik+1 (14)

对于输出的约束,也可以写成

ylow-Y(k)-εk+1≤GΔU(k)≤yhi-Y(k)+εk+1 (15)

输出的约束转化为批次间输入变化量的函数,这个约束也是关于ΔU(k)的凸集;将这个集合记为Ω2

对于同时存在式(6)(7)(8)描述的输入约束和(13)描述的输出约束的系统,其约束集合可以表述为Ω1∩Ω2

Ω1∩Ω2={U(k)|ζuU(k)≥ζk} (16)

其中,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710272144.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top