[发明专利]一种基于网络节点能量传递的人物异常轨迹检测方法有效
申请号: | 201710256750.9 | 申请日: | 2017-04-19 |
公开(公告)号: | CN107133971B | 公开(公告)日: | 2019-12-10 |
发明(设计)人: | 冯文廷;陈志;岳文静 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06T7/246 | 分类号: | G06T7/246 |
代理公司: | 32200 南京经纬专利商标代理有限公司 | 代理人: | 朱桢荣 |
地址: | 210023 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 网络 节点 能量 传递 人物 异常 轨迹 检测 方法 | ||
本发明公开了一种基于网络节点能量传递的人物异常轨迹检测方法。该方法提出一种将整个场景模型化为一个网络,网络中的每个节点相当于场景中的一个网格,每一条边代表不同网格之间的能量传递关系,再使用上述网络将场景中的人物以其中心点表示,人物的运动轨迹被模型化为网络中节点之间的能量传递,最后通过计算轨迹起始点间总的传递能量并和正常轨迹所需能量作对比即可检测该轨迹是否异常。本发明中网络节点间的能量阈值能够根据实际情况动态更新调整,对人物异常轨迹检测具有良好的检测效果。
技术领域
本发明涉及图像处理技术领域,特别是一种基于网络节点能量传递的人物异常轨迹检测方法。
背景技术
人物轨迹追踪和检测是计算机视觉领域内非常活跃的研究方向,在视频监控、医疗看护、无人驾驶等领域都有着十分广泛的应用前景。通过计算机对人物的轨迹进行追踪和判断,既能大大减轻人们实际的工作负担,又由于计算机对图像独特的处理能力,使得一些人们难以发现的微小的安全隐患得以及时被发现,并反馈给相应工作人员做进一步的处理。
人物轨迹追踪技术建立在人物识别技术之上,目前已有的很多技术已经能较好地识别出人体所在的位置,如基于Haar特征和Adaboost分类器的人体检测技术和基于Hog特征和SVM分类器的人体检测技术等等。通过以上技术获取人体所在位置并提取出人体的几何中心即是本发明的轨迹异常检测的前提。
现有的行为分析方法有基于时空特征的模式分析方法,这类方法先提取每帧图像的人体区域,然后通过各种几何特征来分析人体动作,但该方法只能局限于简单的单人行为。也有基于图像统计处理的方法直接对视频帧的低层信息进行统计分析从而对视频段的人物行为进行理解,但这种方法需要进行大量的图像分析,导致计算量非常的大。现阶段对人物的异常动作检测效果欠佳且检测过程复杂的问题。
发明内容
本发明所要解决的技术问题是克服现有技术的不足而提供一种基于网络节点能量传递的人物异常轨迹检测方法,以简单高效地对人物异常轨迹进行检测。
本发明为解决上述技术问题采用以下技术方案:
根据本发明提出的一种基于网络节点能量传递的人物异常轨迹检测方法,包括以下步骤:
步骤1、定义场景G,将G模型化为一个网络,具体如下:
步骤11、将G分成n*n个互不相交的网格,每一个网格代表网络中的一个节点,n为G中横向的网格数和纵向的网格数;
步骤12、在网络中两个不同的节点之间构建一条边,代表两个节点间能量传递的关系,定义边的权值为节点间能量传递的大小;
步骤2、输入人物的轨迹作为训练样本,对网络中不同节点间的边权进行动态更新,具体步骤如下:
步骤21、设输入的轨迹起始点为s,终点为e;定义R(s,e)代表以s为起点,e为终点的轨迹中所经过的节点对的集合,即R(s,e)={(s,s1),(s1,s2),...,(sn-1,e)},s1,s2,...,sn-1为轨迹所途经的节点;
步骤22、定义E(i,j)为连接第i个节点和第j个节点之间的边权,初始化相邻两个节点的边权为1,其它节点间的边权为0,通过计算轨迹途经节点对间传递的能量总和更新轨迹起点和终点的边权,更新公式如下:
其中,i,j分别代表轨迹中第i个节点和第j个节点,E(s,e)代表轨迹起点和终点间的边权;
步骤3、重复步骤2对多个人物的轨迹进行训练,直到网络中每个节点对的边权都得到更新,并且更新次数达到训练的预设要求为止;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710256750.9/2.html,转载请声明来源钻瓜专利网。