[发明专利]一种在垂直视角下基于深度学习的客流计数方法有效

专利信息
申请号: 201710139113.3 申请日: 2017-03-09
公开(公告)号: CN107103279B 公开(公告)日: 2020-06-05
发明(设计)人: 赖剑煌;李传俊;谢晓华 申请(专利权)人: 广东顺德中山大学卡内基梅隆大学国际联合研究院;中山大学
主分类号: G06K9/00 分类号: G06K9/00;G06T7/00
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 528300 广东省佛山市顺德区大良*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 垂直 视角 基于 深度 学习 客流 计数 方法
【说明书】:

发明提供一种在垂直视角下基于深度学习的客流计数方法,该方法垂直视角下进行人流统计,相比于斜拍视角,这个视角更容易应对商场、超市、地铁等公共场所人流很密集的情况;提出利用深度学习检测头肩,利用深度学习强大的学习能力,不需要对视频进行背景建模和前景提取,也不需要对前景进行行人切割,能够更精确更鲁棒地检测到头肩信息;进行匹配跟踪利用的是深度卷积特征,相对于HOG、LBP等手动设计的特征,深度卷积特征有更好的表达能力,能够更好的应对各种场景;本发明是直接将某一层的深度卷积特征拿来做匹配,避免了特征的重复计算,使得更加省时。

技术领域

本发明涉及数字图像处理领域,更具体地,涉及一种在垂直视角下基于深度学习的客流计数方法。

背景技术

近来年,视频客流计数技术一直是业界备受关注的研究热点,它也逐步应用于各大商场连锁店、超市、酒店、机场、地铁、景区等,这些场景下产生的人流量数据能够为很多领域提供很有价值的信息。对于各大商场连锁店、超市而言,面对目前火热的线上电子商务系统,如京东、淘宝、天猫、亚马逊等,线下的销售市场一直受到挤迫,科学化的管理显然是提高自身竞争力的有效手段。商场内不同时段、不同区域的人流数据在提高其经营决策的科学性、资源调度的合理性、消费环境的舒适性等方面起到了重要的作用,商业人流数据对商业的绩效考核、商品转化率、店铺选址、商品陈列、广告价值有着很重要的意义。另外,对于展览馆、体育馆、地铁站、公交站、机场等公共场所中,人流数据能够呈现实时精准的的区域人数和人群密度,管理者通过数据分析动态调整工作人员配置计划,控制区域人群数量,使资源更合理使用,同时也能加强安全防范。

目前针对客流计数这个领域,现有技术中有提出了利用局部轮廓的方法去检测头部,他用椭圆模型去拟合头部轮廓,当轮廓拟合度比较高就认为是一个头部。现有技术中还有利用头发的颜色以及头部的轮廓特征进行头部检测,众所周知,头部的轮廓类似一个圆,所以可以利用这个特征检测头部。但是这种特征的缺点就是容易受到轮廓类似圆的其他物体所影响,比如气球等。现有技术中还有提出了一个有效的行人计数方法,第一次使用霍夫圆变换(Hough circle Transform)进行头部检测,后面接上光流(optical flow)法进行跟踪,但是,这个方法的缺点就是光流需要耗费很大的计算力,难以部署到嵌入式设备上。现有技术中还有提出了一种先利用高斯混合背景建模提取前景区域,接着在前景区域使用自适应增强(Adaptive Boosting)方法结合局部二值模式(Local Binary Pattern)特征进行人头检测,最后接上均值漂移(meanshift)跟踪算法进行进出统计,这样一个系统依赖于前景提取的完整,而很多时候尤其在画面中行人密集的时候很难提取完好的前景。

发明内容

本发明提供一种明显地提高人流统计准确率的在垂直视角下基于深度学习的客流计数方法。

为了达到上述技术效果,本发明的技术方案如下:

一种在垂直视角下基于深度学习的客流计数方法,包括以下步骤:

S1:在视频画面内绘制进出统计线;

S2:利用深度学习方法在当前画面内进行行人头肩检测;

S3:判断当前画面是否存在头肩,如果是则转到步骤S4;如果不是则转到步骤S2,对下一帧继续检测;

S4:将当前帧检测到的头肩与跟踪列表里的头肩进行匹配更新;

S5:判断跟踪目标起始点和终止点是否在进出线两侧,如果是则转到步骤S6;如果不是则转到步骤S2,对下一帧继续检测;

S6:更新进出的人数信息,接着转到步骤S2,对下一帧继续检测。

进一步地,所述步骤S1中当行人先经过进线再经过出线,表示离开状态,反之,当行人先经过出线再经过进线,表示进入状态。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东顺德中山大学卡内基梅隆大学国际联合研究院;中山大学,未经广东顺德中山大学卡内基梅隆大学国际联合研究院;中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710139113.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top