[发明专利]基于部位分割的人体再识别方法有效
申请号: | 201710124643.0 | 申请日: | 2017-03-03 |
公开(公告)号: | CN106874884B | 公开(公告)日: | 2019-11-12 |
发明(设计)人: | 张良;姜华 | 申请(专利权)人: | 中国民航大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/40;G06K9/62;G06K9/34;G06T5/00 |
代理公司: | 天津才智专利商标代理有限公司 12108 | 代理人: | 庞学欣 |
地址: | 300300 天*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 部位 分割 人体 识别 方法 | ||
一种基于部位分割的人体再识别方法。其包括图像数据获取、粗识别和细识别等步骤。本发明效果:现代人衣服款式颜色多种多样,衣袖的颜色往往和躯干部分的颜色不一样,大腿和小腿处的裤子的颜色也会不一样。且在监控摄像头中,头部信息一般较为细微,不易找到区分度大的特征,而脚部偏小,不易采集。基于以上考虑,把人体除头以外,分割为:躯干、左/右上臂、左/右下臂、左/右大腿、左/右小腿共9个部位进行再识别具有较高的识别率。粗识别可以提取出与查询集颜色相近的候选集人体,但无法缩小搜索范围。在粗识别的基础上,对于躯干部位图像,使用投影法可以提取出躯干部位的图案及图案的位置信息,进一步提高了识别率。
技术领域
本发明属于计算机视觉与图像处理技术领域,特别是涉及一种基于部位分割的人体再识别方法。
背景技术
随着计算机视觉技术的快速发展,由于人体再识别具有非接触性的特点,因此在公共安全、医疗保健、刑事侦查等方面有着广阔的应用前景。人体再识别作为行人姿态、动作、行为识别等高层应用的基础,具有重要的研究意义。
目前的人体再识别研究主要有两个方向:(1)基于特征表示的方法。虽然该类方法在一定程度可以提高再识别的准确性,但是仅从整体特性考虑人体目标,缺少了对人体目标的空间约束性信息。(2)基于距离度量学习的方法。该类方法中距离函数的性能好坏与样本的选取息息相关。当具有足够多的样本时,学习出的距离函数才能够普遍适用于多种环境下的再识别问题。而在样本数过少时,会出现过拟合现象。另外,实际操作时,训练数据样本需要人工标注,因此会消耗大量的人工时间成本。
基于部位分割的人体再识别属于上述第二种方法。该方法利用在再识别前做了大量的部位分割筛选的初期工作,能够较快速、准确地再识别出目标人体。正因为图像采集的同时需要处理和筛选且实时性要求较高,因此需要具有较高图像计算复杂度的微机系统。Farenzena M,Bazzani L,Perina A等[Person Re-identification by Symmetry-drivenAccumulation of Local Features[C].IEEE Conference on Computer Visionand PatternRecognition(CVPR),2010:2360–2367]将视频图像中人体除头部以外分为四个区域,分别提取并融合加权HSV直方图特征、最大稳定颜色区域(MSCR)和高频复杂结构块(RHSP)三种特征来判断是否是同一个人。该方法区域分割简单,但是鲁棒性较差,没有深层次地挖掘短间隔内多帧图像之间的区别。中国专利公开号CN105303152A中公开了一种将人体尺度空间划分与颜色通道结合来进行人体再识别的方法。每个颜色通道根据人体尺度空间划分的多层图像区域进行空间直方图计算。但多个颜色通道级联形成多通道空间直方图时受复杂多变的环境背景的影响较大,从而造成识别率低。
发明内容
为了解决上述问题,本发明的目的在于提供一种基于部位分割的人体再识别方法。
为了达到上述目的,本发明提供的基于部位分割的人体再识别方法包括按顺序进行的下列步骤:
1)图像数据获取:首先利用Kinect摄像头采集待检测场景的多帧图像,然后从上述图像中提取出人体前景图像,去噪后依次按部位分割成部位图像并筛选、保存;将所有需查询的人体部位图像保存为查询集,所有采集到的人体部位图像保存为候选集,并将采集到的人体部位图像按图像序号和部位进行保存;
2)粗识别:将需查询的人体目标部位图像和候选集中所有人体部位图像从RGB颜色空间转换到HSV颜色空间,之后获得颜色直方图,然后使用EMD(地球移动距离)度量颜色直方图间的相似性,并根据部位和拍摄角度的不同分配不同的权重,最后得到人体目标与候选集所有人体之间的总体EMD值并从小到大进行排序;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国民航大学,未经中国民航大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710124643.0/2.html,转载请声明来源钻瓜专利网。