[发明专利]一种基于特征融合粒子滤波的仿生机器鱼视觉跟踪方法有效
申请号: | 201611246452.3 | 申请日: | 2016-12-29 |
公开(公告)号: | CN106780560B | 公开(公告)日: | 2020-11-06 |
发明(设计)人: | 郭树理;韩丽娜;王稀宾;袁振兵;崔伟群;王春喜;司全金;李铁岭;刘源;黄剑武;郭芙苏;曲大成 | 申请(专利权)人: | 北京理工大学;中国人民解放军总医院;中国计量科学研究院 |
主分类号: | G06T7/246 | 分类号: | G06T7/246;G06K9/62 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 代丽;仇蕾安 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 特征 融合 粒子 滤波 仿生 机器 视觉 跟踪 方法 | ||
本发明公开了一种基于特征融合粒子滤波的仿生机器鱼视觉跟踪方法。使用本发明能够有效提高跟踪算法对光照变化的适应性,提高目标跟踪算法的鲁棒性,且精度高,能应用于水下环境比较复杂的环境。本发明综合考虑机器鱼的颜色特征和运动情况,将机器鱼的运动信息和边缘信息相结合,通过颜色和运动边缘双特征的融合来构建粒子滤波的观测模型,并通过观测模型来对系统运动模型预测的目标估计结果进行修正,有效降低系统的误差,提高视觉子系统的鲁棒性。
技术领域
本发明涉及视觉跟踪技术领域,具体涉及一种基于特征融合粒子滤波的仿生机器鱼视觉跟踪方法。
背景技术
随着对海洋资源开发的不断深入,仿生机器鱼协作控制系统引起关注,而视觉子系统作为仿生机器鱼协作控制系统的重要组成部分,是决策子系统的唯一信息来源,视觉跟踪算法决定了目标跟踪的快速准确性和实时性。
机器视觉最早出现于1975年由Winston编辑的论文集中。英国的Marr教授于1973年在麻省理工学院(MIT),创建了一个新的视觉理论研究小组,在1977年,提出了一种新的计算机视觉理论—Marr视觉理论。该理论在20世纪80年代成为计算机视觉研究领域的一个十分重要的理论框架,陆续用于高级视频安全监控技术,如校园监控、交通监控、道路行人统计系统,另外视觉跟踪技术在导弹成像制导、超声波和核磁序列图像的自动分析、人机交互、虚拟现实、机器人视觉导航等方面有广泛重要应用。每种机器视觉系统集成了很多,比如静止背景和运动背景下的实时目标探测与跟踪、目标的分类识别、目标姿势估计、摄像机的自主控制、视频图像处理系统、人体步法分析等等。国内以中科院自动化所模式识别国家重点实验室为代表的很多高校和研究机构也在机器视觉领域取得了不错的科研成果。但无论是国内还是国外,在机器视觉领域的研究重点都基本在于对所获得图像信息的前期处理(去噪、增强、目标检测等)和在复杂环境中对多个视频运动目标进行稳定、快速和准确地跟踪。其难点在于现在的视觉任务多是由2D图像恢复3D场景,而由于成像过程中存在投影、遮挡、各种场景因素的混合、畸变等,要想通过高度结构化的表示获得3D模型的客观描述是很困难的,这些始终是当前机器视觉研究领域中需要不断提升机器视觉算法改进效果的问题。
在机器视觉领域,跟踪算法的主要工作是在连续的视频序列中找到表示目标区域或目标特征的图像结构的连续对应。鲁棒性和实时性是视觉子系统目标跟踪模块的基本要求,也是最大难点。视觉跟踪的目的是要实现目标定位,其实质可归结为目标参数的推导过程。根据推导目标参数的方法,视觉跟踪方法划分为确定性方法和概率估计方法两大类:确定性方法的缺陷在于其鲁棒性不强,不能很好地解决跟踪中常见的光照变化、形变等对目标跟踪的影响;概率估计法中最初发展起来的是卡尔曼滤波(KF),其改进形式扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF),此后出现了更适合非线性非高斯系统的粒子滤波(PF)算法。与确定性方法相比,概率估计方法鲁棒性更好,近年来成为视觉跟踪算法中的研究热点。在硬件设备已定的条件下,影响鲁棒性的因素主要有两点:一个是先验知识的获取,包括目标建模和对环境信息的了解;另一个是跟踪算法,一般地鲁棒性好的算法要更复杂。
不同于陆地机器人,机器鱼是在水中运动的,由于机器鱼游动时带来的水面波动和反光,颜色信息容易受到某处光照强度的干扰而发生变化,而基于颜色特征的机器视觉识别技术对光照的要求普遍比较高,不稳定的光照条件会影响目标识别的准确性。因此,需要对现有的视觉跟踪技术进行改进。
发明内容
有鉴于此,本发明提供了一种基于特征融合粒子滤波的仿生机器鱼视觉跟踪方法,在粒子滤波算法中融合了目标的颜色特征和运动边缘特征,能够有效提高跟踪算法对光照变化的适应性,提高目标跟踪算法的鲁棒性,且精度高,能应用于水下环境比较复杂的环境。
本发明的基于特征融合粒子滤波的仿生机器鱼视觉跟踪方法,包括如下步骤:
步骤1,初始化:利用矩形框手动选定跟踪目标,提取目标的HSV颜色直方图、运动边缘直方图,组成目标模板;选取目标模板中的粒子数量为N,粒子权重为
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学;中国人民解放军总医院;中国计量科学研究院,未经北京理工大学;中国人民解放军总医院;中国计量科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611246452.3/2.html,转载请声明来源钻瓜专利网。