2.一种权利要求1所述的利用抱辊测量环件圆心位置和环件外圆半径的系统的测量方法,其特征是,它的测量过程为:
1)通过所述两油缸内置的位移传感器测得任意时刻所述两油缸的行程s1,s2;
2)所述各部件的结构尺寸为定值,以环件与主辊的交点A为原点做一直角坐标系,在该直角坐标系中,所述两抱辊的半径为Rb;环件的圆心为O点,环件外圆半径为R,抱辊I的圆心为Ob1点,抱辊II的圆心为Ob2点,抱臂I旋转中心为B点,抱臂II旋转中心为G点,抱臂I与油缸I铰接中心为C点,抱臂II与油缸II铰接中心为H点,油缸I旋转中心为D点,油缸II的旋转中心为I点;
3)环件圆心位置、环件外圆半径与油缸行程之间的数理关系,该关系具体形式如下:
x=B-B2-4AC2Ay=A(x12+y12-x22-y22)-(x1-x2)(B-B2-4AC)2A(y1-y2)R=(B-B2-4AC2A)2+(A(x12+y12-x22-y22)-(x1-x2)(B-B2-4AC)2A(y1-y2))2]]>
其中:
C=Rb2(x12+y12-x22-y22)2-[y1(x22+y22)-y2(x12+y12)-Rb2(y1-y2)]2]]>
x1=lOb1Bcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)+lBP]]>
y1=lPA+lOb1Bsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)]]>
x2=lOb2Gcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)+lGQ]]>
y2=-[lQA+lOb2Gsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)]]]>
4)将数据代入上述公式即得到瞬时环件的圆心O的位置坐标(x,y)和环件圆心半径R。
3.如权利要求2所述的利用抱辊测量环件圆心位置和环件外圆半径的方法,其特征是,
所述步骤3)中,环件圆心位置、环件外圆半径与油缸行程之间的数理关系的确定方法为:
ΔBDE和ΔGIJ为固定三角形,且两三角形全等,ΔOb1BC和ΔOb2GH为固定三角形,且两三角形全等
∠DBE=∠IGJ=arcsinlDElDB]]>
∠Ob1BC=∠Ob2GH=arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC]]>
ΔBCD中:∠CBD=arccoslBC2+lBD2-s122lBC·lBD]]>
ΔIGH中:∠IGH=arccoslGI2+lGH2-s222lGI·lGH]]>
∠Ob1BM=π-(∠Ob1BC+∠CBD+∠DBE)
∠Ob2GN=π-(∠Ob2GH+∠IGH+∠IGJ)
在直角坐标系中,设环件圆心坐标O(x,y),两抱辊中心坐标为Ob1(x1,y1),Ob2(x2,y2)则
x1=-lMP=-(lBM-lBP)=-(lOb1Bcos∠Ob1BM-lBP)]]>
=-[lOb1Bcos[π-(∠Ob1BC+∠CBD+∠DBE)]-lBP]]]>
=-[-lOb1Bcos(∠Ob1BC+∠CBD+∠DBE)-lBP]]]>
=lOb1Bcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)+lBP]]>
y1=lPA+lOb1Bsin∠Ob1BM]]>
=lPA+lOb1Bsin[π-(∠Ob1BC+∠CBD+∠DBE)]]]>
=lPA+lOb1Bsin(∠Ob1BC+∠CBD+∠DBE)]]>
=lPA+lOb1Bsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)]]>
x2=-lNQ=-(lGN-lGQ)=-(lOb2Gcos∠Ob2GN-lGQ)]]>
=-lOb2Gcos[π-(∠Ob2GH+∠IGH+∠IGJ)]+lGQ]]>
=lOb2Gcos(∠Ob2GH+∠IGH+∠IGJ)+lGQ]]>
=lOb2Gcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)+lGQ]]>
y2=-(lQA+lOb2Gsin∠Ob2GN)]]>
=-[lQA+lOb2Gsin[π-(∠Ob2GH+∠IGH+∠IGJ)]]]>
=-[lQA+lOb2Gsin(∠Ob2GH+∠IGH+∠IGJ)]]]>
=-[lQA+lOb2Gsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)]]]>
列方程组如下
lOOb1=(x1-x)2+(y1-y)2=R+RblOOb2=(x2-x)2+(y2-y)2=R+RblOA=x2+y2=R]]>
解以上方程组可得
x=B-B2-4AC2Ay=A(x12+y12-x22-y22)-(x1-x2)(B-B2-4AC)2A(y1-y2)R=(B-B2-4AC2A)2+(A(x12+y12-x22-y22)-(x1-x2)(B-B2-4AC)2A(y1-y2))2]]>
其中:
C=Rb2(x12+y12-x22-y22)2-[y1(x22+y22)-y2(x12+y12)-Rb2(y1-y2)]2]]>
x1=lOb1Bcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)+lBP]]>
y1=lPA+lOb1Bsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslBC2+lBD2-s122lBC·lBD+arcsinlDElDB)]]>
x2=lOb2Gcos(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)+lGQ]]>
y2=-[lQA+lOb2Gsin(arccoslOb1B2+lBC2-lOb1C22lOb1B·lBC+arccoslGI2+lGH2-s222lGI·lGH+arcsinlDElDB)]]]>