[发明专利]一种NiO@Al2O3@TiO2同轴三层纳米电缆的制备方法无效
申请号: | 201110057913.3 | 申请日: | 2011-03-11 |
公开(公告)号: | CN102214505A | 公开(公告)日: | 2011-10-12 |
发明(设计)人: | 董相廷;王进贤;宋超;于文生;刘桂霞;徐佳 | 申请(专利权)人: | 长春理工大学 |
主分类号: | H01B13/016 | 分类号: | H01B13/016 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 130022 吉林*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 nio al sub tio 同轴 三层 纳米 电缆 制备 方法 | ||
技术领域
本发明涉及无机纳米材料制备技术领域,具体说涉及一种NiO@Al2O3@TiO2同轴三层纳米电缆的制备方法。
背景技术
一维纳米结构材料的制备及性质研究是目前材料科学研究领域的前沿热点之一。纳米电缆(Nanocables)由于其独特的性能、丰富的科学内涵、广阔的应用前景以及在未来纳米结构器件中占有的重要战略地位,近年来引起了人们的高度重视。同轴纳米电缆的研究起步于90年代中期,2000年以后发展比较迅猛,到目前为止,人们采用不同的合成方法,不同种类的物质已成功制备出了上百种同轴纳米电缆,如:Fe/C、Zn/ZnO、C/C、SiC/C、SiGaN/SiOxNy以及三层结构的Fe-C-BN和α-Si3N4-Si-SiO2等。在过去的十多年中,人们在原有制备准一维纳米材料的基础上开发出许多制备同轴纳米电缆的方法,如:水热法、溶胶-凝胶法、基于纳米线法、气相生长法、模板法等。继续探索新的合成技术,不断发展和完善同轴纳米电缆的制备科学,获得高质量的同轴纳米电缆,仍是目前同轴纳米电缆研究的主要方向。
由于二氧化钛TiO2和氧化镍NiO具有优异的光催化、高的光电转化效率、超强的化学稳定性以及很好的生物相容性等性能,因而在光催化分解有机物、光电池电极、珠光材料、组织器官、消毒抗菌等方面获得广泛应用。氧化铝Al2O3具有良好的耐腐蚀性,较高的化学稳定性、热稳定性,广泛应用于冶金、机械、化工、电子、医学、航空和国防等方面。纳米化后的Al2O3在精密陶瓷方面更有着重要的应用,对其表面进行包覆处理,有望获得一些新的性能和应用。目前未见通过NiO、Al2O3和TiO2构建NiO@Al2O3@TiO2同轴三层纳米电缆的报道,@表示芯壳结构,即电缆结构,此电缆为三层电缆结构,芯层@中间层@壳层,芯层为NiO,中间层为Al2O3,壳层为TiO2,此纳米电缆具有特殊的结构,以期获得更广泛的应用。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长春理工大学,未经长春理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110057913.3/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO