[发明专利]基于自动深度卷积学习模型的十二导联心电图的分类方法在审
申请号: | 202210661407.3 | 申请日: | 2022-06-13 |
公开(公告)号: | CN115105085A | 公开(公告)日: | 2022-09-27 |
发明(设计)人: | 孙乐;徐天博 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | A61B5/318 | 分类号: | A61B5/318;A61B5/346;A61B5/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 陆烨 |
地址: | 224002 江苏省盐城*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于自动深度卷积学习模型的十二导联心电图的分类方法,具体为:步骤1:对样本心电信号进行去噪处理;并将去噪处理后的心电信号划分成训练集和测试集;步骤2:构建基于Resnet34的深度卷积学习模型;步骤3:对心电信号中每类心拍类型标签进行One‑Hot编码;步骤4:采用训练集对步骤3的深度卷积学习模型进行训练;训练完成后,保存准确率最高的模型参数和准确率;并采用测试集测试训练后的深度卷积学习模型的准确度。步骤5:将实际的心电信号输入至训练后得到的基于Resnet34的深度卷积学习模型中,得到实际的心电信号的类别。本发明提高了分类的精度,并且增加了模型的可解释性。 | ||
搜索关键词: | 基于 自动 深度 卷积 学习 模型 十二 心电图 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210661407.3/,转载请声明来源钻瓜专利网。