[发明专利]基于原始有效载荷和深度学习的Android恶意软件分类方法在审
申请号: | 202210608633.5 | 申请日: | 2022-05-31 |
公开(公告)号: | CN115062303A | 公开(公告)日: | 2022-09-16 |
发明(设计)人: | 王俊峰;鲁婷婷;张格 | 申请(专利权)人: | 四川大学 |
主分类号: | G06F21/56 | 分类号: | G06F21/56;G06K9/62;G06N3/04;G06N3/08;G06F40/126;G06F40/216;H04W12/128 |
代理公司: | 成都禾创知家知识产权代理有限公司 51284 | 代理人: | 刘凯 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于原始有效载荷和深度学习的Android恶意软件分类方法,涉及移动软件安全领域。本发明从恶意软件的PCAP文件提取每个完整的flow;将提取出的所有flows存储在一个单向循环列表中;采用基于滑动窗口的选择算法从该单向循环列表中采样N个flows作为一组以描述恶意软件的网络活动;利用文本表征方法对N个flows进行编码,以生成流量矩阵;以该流量矩阵作为卷积神经网络模型的输入,完成恶意软件分类模型的训练过程;使用建立的恶意软件分类模型,对待检测软件样本进行实时检测,输出分类结果。与其他基于特征工程的分类方法相比,本发明的分类方法具有更高的分类准确率。 | ||
搜索关键词: | 基于 原始 有效 载荷 深度 学习 android 恶意 软件 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210608633.5/,转载请声明来源钻瓜专利网。
- 上一篇:硅片自动倒角加工工艺
- 下一篇:一种用于节水环保中的水文水资源检测设备