[发明专利]基于深度迁移学习与XGBoost的混合鸟鸣识别方法在审

专利信息
申请号: 202210536031.3 申请日: 2022-05-17
公开(公告)号: CN114863937A 公开(公告)日: 2022-08-05
发明(设计)人: 刘玮;张飞;张彦铎;卢涛;陈灯;栗娟;邵俊杰;华鑫;张鹏;王凯 申请(专利权)人: 武汉工程大学
主分类号: G10L17/26 分类号: G10L17/26;G10L17/02;G10L17/04;G10L17/18
代理公司: 湖北武汉永嘉专利代理有限公司 42102 代理人: 樊凡
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了基于深度迁移学习与XGBoost的混合鸟鸣识别方法,通过计算log‑Mel频谱图的一阶差分系数和二阶差分系数,反映鸟鸣信号的变化过程,在保留物种有效信息的同时减少环境噪声等无关因素的影响,提升了识别鸟类物种的准确率;减少了环境背景噪声等无关因素的影响,有效识别了自然场景下的多种鸟类物种。本发明采用深度迁移学习微调VGG16模型构建特征提取器,提升了少样本训练数据下深度卷积神经网络的泛化能力,减少了参数训练,提升了运行效率。本发明将鸟鸣信号更准确的映射为鸟类物种,对自然环境中多种鸟类鸣声均具有良好的识别性能。
搜索关键词: 基于 深度 迁移 学习 xgboost 混合 鸟鸣 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉工程大学,未经武汉工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210536031.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top