[发明专利]一种基于低比特脉冲神经网络的图像数据分类方法和装置有效
申请号: | 202210261211.5 | 申请日: | 2022-03-17 |
公开(公告)号: | CN114332545B | 公开(公告)日: | 2022-08-05 |
发明(设计)人: | 张徽;时拓;刘琦;高丽丽;王志斌;顾子熙;崔狮雨;李一琪 | 申请(专利权)人: | 之江实验室 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/04 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 孙孟辉 |
地址: | 311100 浙江省杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于低比特脉冲神经网络的图像数据分类方法和装置,该方法包括:步骤一,获取开源图像数据集,分为训练集和测试集,其中数据集包括计算机图像数据和神经形态数据;步骤二,构建包含隐含层的脉冲神经网络模型,再改进LIF神经元,构建基于改进后的LIF神经元的脉冲神经网络模型;步骤三,通过构建训练损失函数并进行各项梯度求解,对脉冲神经网络模型进行训练;步骤四,在训练集上使用梯度下降参数更新方法进行脉冲神经网络模型优化训练;步骤五,利用构建并训练好的脉冲神经网络模型,对测试集进行识别,得到预测的数据分类标签,实现分类任务。本发明的方法具有更低的功耗,同时与全精度网络模型有近似的准确率。 | ||
搜索关键词: | 一种 基于 比特 脉冲 神经网络 图像 数据 分类 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于之江实验室,未经之江实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210261211.5/,转载请声明来源钻瓜专利网。