[发明专利]基于深度学习与诊断规则的心拍形态识别方法及系统在审

专利信息
申请号: 202111651395.8 申请日: 2021-12-30
公开(公告)号: CN114098749A 公开(公告)日: 2022-03-01
发明(设计)人: 师丽;韩闯;王治忠;王松伟 申请(专利权)人: 清华大学;郑州大学
主分类号: A61B5/318 分类号: A61B5/318;A61B5/355;A61B5/358;A61B5/366;A61B5/00
代理公司: 郑州睿途知识产权代理事务所(普通合伙) 41183 代理人: 李伊宁
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习与诊断规则的心拍形态识别方法及装置,包括以下步骤:A:获取待检测心拍并通过m个基于DenseNet的深度神经网络分别生成待检测心拍中不同类别的心拍概率;B:根据得到的每个基于DenseNet的深度神经网络生成不同类别的心拍概率,通过融合决策的方法确定各个类别心拍概率的最终概率;C:根据各个类别心拍概率的最终概率,结合设定的概率阈值,判断待检测心拍所属的心拍类别;并利用诊断规则条件进一步校验待检测心拍的类别。本发明能够解决现有技术中对心梗患者QRS波、ST段和T波形态识别时依赖于特征点检测的准确性、自适应性差和易受噪声干扰鲁棒性差的缺陷,具有较高的识别准确率。
搜索关键词: 基于 深度 学习 诊断 规则 形态 识别 方法 系统
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;郑州大学,未经清华大学;郑州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111651395.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top