[发明专利]一种基于LSTM神经网络算法的非侵入式负荷识别方法在审
申请号: | 202111214512.4 | 申请日: | 2021-10-19 |
公开(公告)号: | CN113902101A | 公开(公告)日: | 2022-01-07 |
发明(设计)人: | 王新迪;卞海红;潘柯言;王新策;金王琴 | 申请(专利权)人: | 南京工程学院 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06Q50/06 |
代理公司: | 南京源古知识产权代理事务所(普通合伙) 32300 | 代理人: | 郑宜梅 |
地址: | 211167 江苏省南京*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于LSTM神经网络算法的非侵入式负荷识别方法,包括获取非侵入式监测装置所监测的用电设备稳态时电流波形数据;将稳态电流波形利用离散傅里叶变换进行N次谐波分解得到样本集,将训练集通入循环神经网络进行训练获得基于神经网络的负荷识别预测模型;将测试集带入基于循环神经网络的负荷识别模型并对比输出结果,生成优化后的基于循环神经网络的负荷识别模型。本方法在不同负载情况下均可以对用电器,尤其是小功率用电器进行准确识别,且识别时间较短,可以进行负载的实时监测。 | ||
搜索关键词: | 一种 基于 lstm 神经网络 算法 侵入 负荷 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京工程学院,未经南京工程学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111214512.4/,转载请声明来源钻瓜专利网。