[发明专利]一种基于GAN网络的深度学习跨项目软件缺陷的预测方法在审
申请号: | 202110673062.9 | 申请日: | 2021-06-17 |
公开(公告)号: | CN113419948A | 公开(公告)日: | 2021-09-21 |
发明(设计)人: | 邢颖;钱晓萌;于秀丽;林婉婷;吴澍 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F11/36 | 分类号: | G06F11/36;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于GAN网络的深度学习跨项目软件缺陷的预测方法。该方法包括:使用简化的抽象语法树来表示目标项目和源项目中每个提取的程序模块的代码;通过深度遍历抽象语法树提取出token向量;对token向量进行词嵌入,得出每个单词对应的词向量,并用词向量替代token向量中的token,把token向量转化为数值向量;将源项目对应的数值向量作为输入,训练源编码器和源分类器;将目标项目对应的数值向量作为输入,将目标编码器的初始参数设定为与训练好的源编码器的参数相同;将训练好的源编码器的输出特征作为GAN网络中的真实数据,然后将目标编码器的输出特征作为虚假数据,通过GAN网络的鉴别器进行训练;用训练好的源分类器对目标编码器的输出特征进行分类;输出分类结果。本发明提供的跨项目软件缺陷的预测方法,速度快,准确率高。 | ||
搜索关键词: | 一种 基于 gan 网络 深度 学习 项目 软件 缺陷 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110673062.9/,转载请声明来源钻瓜专利网。