[发明专利]基于多分类器卷积神经网络的联合训练方法在审

专利信息
申请号: 202110553129.5 申请日: 2021-05-20
公开(公告)号: CN113269306A 公开(公告)日: 2021-08-17
发明(设计)人: 刘培宇;何玉鹏;姚敏;郭剑;高睿;董树龙;韩崇;王娟 申请(专利权)人: 南京邮电大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 王素琴
地址: 210003 *** 国省代码: 江苏;32
权利要求书: 暂无信息 说明书: 暂无信息
摘要: 基于多分类器卷积神经网络的联合训练方法,包括步骤:分割训练样本;训练单分类器卷积神经网络;训练多分类器卷积神经网络;换下一批训练样本;单独训练线性分类器。本发明提出的参数更新方式,利用置信值预估出每个样本为此层易分类样本的概率,并作用于每层的误差上,通过加上这个误差,即一定梯度的正方向,调和了多走的距离。提出的新的参数更新方式通过使用来表示此分类样本为前面层的易分类样本的概率,量化了需要加上的误差的必要性。提出的新的训练方式,先训练单分类器卷积神经网络,再训练每层带线性分类器的多分类器卷积神经网络,先给予每层卷积层参数一定的训练,有益于每层的线性分类器更加专注于本层卷积层所提取的特征的识别。
搜索关键词: 基于 分类 卷积 神经网络 联合 训练 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110553129.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top