[发明专利]选择性像素亲和学习的弱监督语义图像分割方法有效
申请号: | 202110395752.2 | 申请日: | 2021-04-13 |
公开(公告)号: | CN113096138B | 公开(公告)日: | 2023-04-28 |
发明(设计)人: | 张向荣;赵紫晨;焦李成;陈璞花;古晶;唐旭;冯婕 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06V10/26 | 分类号: | G06V10/26;G06V10/764;G06V10/774;G06N3/0464;G06V10/82;G06N3/0895;G06N3/084 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 田文英;王品华 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种选择性像素亲和学习的弱监督语义图像分割方法,旨在通过对像素点间相关关系有选择地学习,更加准确预测对象边界以及区域连通处的像素点相关关系,改善对象边界与区域内部的分割效果。实现步骤为:首先,生成类别激活图,生成联合置信度图,生成权值图,在权值图与联合置信度图的共同监督下有选择地训练AffinityNet神经网络,学习并预测像素间亲和性,生成基础训练集中每张图像的伪掩码,最后,训练用于生成掩码的网络,对待分割图像的弱监督语义进行分割。本发明能够改善图像中对象边界与区域连通处的分割结果,提升分割效果。 | ||
搜索关键词: | 选择性 像素 亲和 学习 监督 语义 图像 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110395752.2/,转载请声明来源钻瓜专利网。
- 上一篇:用于活塞与活塞杆装配连接的螺栓
- 下一篇:一种基于多传感器的烟囱内壁定位方法