[发明专利]一种基于迁移学习和深度学习融合的半监督图表示学习方法及装置在审
| 申请号: | 202110261429.6 | 申请日: | 2021-03-10 |
| 公开(公告)号: | CN112990295A | 公开(公告)日: | 2021-06-18 |
| 发明(设计)人: | 刘冰;马永征;李洪涛;杨学 | 申请(专利权)人: | 中国互联网络信息中心 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08;G06N3/04 |
| 代理公司: | 北京君尚知识产权代理有限公司 11200 | 代理人: | 邱晓锋 |
| 地址: | 100190 北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及一种基于迁移学习和深度学习融合的半监督图表示学习方法及装置。本发明通过全局层面和局部层面的两个子任务预训练图神经网络模型,以从未标注的数据中学习输入数据的通用表征;将预训练的图神经网络模型迁移到目标任务的训练过程中,在预训练的图神经网络模型之后添加一个与目标任务相关的输出层,并利用有标签数据对预训练的图神经网络模型的参数进行微调,得到最终的图神经网络模型。本发明在节省人工标记成本的基础上有效结合无标签数据和有标签数据,提升了模型的泛化能力,能够简化目标任务的训练过程,达到更快收敛的目的;本发明充分利用了迁移学习的思想,能够节省大量的计算资源和计算时间,提高计算效率。 | ||
| 搜索关键词: | 一种 基于 迁移 学习 深度 融合 监督 图表 学习方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国互联网络信息中心,未经中国互联网络信息中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110261429.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种同步上下料式转移机构
- 下一篇:一种企业微信中物料推荐方法和系统





