[发明专利]基于一维多尺度深度卷积神经网络的工业过程性能诊断方法在审
申请号: | 202110165973.0 | 申请日: | 2021-02-05 |
公开(公告)号: | CN112949823A | 公开(公告)日: | 2021-06-11 |
发明(设计)人: | 刘凯;吴锋;张日东 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06K9/62 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 孙孟辉 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于一维多尺度深度卷积神经网络的工业过程性能诊断方法,包括如下步骤:步骤1、以频率采集工业过程系统变量的运行数据,建立一个含有多个变量,多种类型故障的数据集,并对数据集进行数据预处理,在此基础上对故障类型进行编号打标签,设置对应的关系,之后对故障类型和标签划分相应的训练集和测试集;步骤2、构建一维多尺度深度卷积神经网络故障诊断模型;步骤3、利用划分好的训练集对提出的一维多尺度深度卷积神经网络进行训练,训练好之后,将验证集输入到模型中进行故障诊断,输出故障分类结果。 | ||
搜索关键词: | 基于 一维多 尺度 深度 卷积 神经网络 工业 过程 性能 诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110165973.0/,转载请声明来源钻瓜专利网。