[发明专利]面向跨网络的表示学习算法在审

专利信息
申请号: 202080005540.2 申请日: 2020-04-03
公开(公告)号: CN113228059A 公开(公告)日: 2021-08-06
发明(设计)人: 王朝坤;严本成 申请(专利权)人: 清华大学
主分类号: G06N3/08 分类号: G06N3/08;G06N3/04
代理公司: 北京中强智尚知识产权代理有限公司 11448 代理人: 黄耀威
地址: 100084*** 国省代码: 北京;11
权利要求书: 暂无信息 说明书: 暂无信息
摘要: 本公开提出一种面向跨网络的表示学习算法,包括:S1,生成包括源网络和目标网络的网络数据;S2,分别从源网络和目标网络随机采样设定数量的节点,并整理成满足算法输入的数据格式;S3,得到源网络和目标网络的输入数据后,分别将其输入到一个L层的神经网络,并对每一层分别计算源网络和目标网络的结构特征和表达特征,计算源网络和目标网络的对应特征之间的距离损失;S4,将从L层的神经网络中得到的源网络节点的表达向量进行分类预测概率计算,通过交叉熵损失函数计算分类损失,并且结合距离损失,通过反向传播算法更新神经网络参数;S5,重复步骤S2‑S4,直至整个算法收敛。本公开有效地解决了跨网络表示学习问题,在现实中有着广阔的应用空间。
搜索关键词: 面向 网络 表示 学习 算法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202080005540.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top