[发明专利]一种基于GCN和集成学习的推荐算法在审

专利信息
申请号: 202011635471.1 申请日: 2020-12-31
公开(公告)号: CN112734006A 公开(公告)日: 2021-04-30
发明(设计)人: 张忠良;夏鹏飞;陈愉予;陈琼;雒兴刚;蔡灵莎 申请(专利权)人: 杭州电子科技大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06N20/20
代理公司: 浙江千克知识产权代理有限公司 33246 代理人: 周希良
地址: 310018 浙江省杭州市*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于推荐系统技术领域,具体涉及一种基于GCN和集成学习的推荐算法,包括以下步骤:S1、数据获取:通过程序获取图信号数据;S2、模型训练:通过将图信号数据转换为图的拉普拉斯矩阵,以训练GCN模型;S3、模型预测:通过设置的Dropout率,将训练的GCN模型表示为多个基模型,并将所有基模型预测的Softmax值作为最终预测值;本发明有效提高推荐算法的准确率,通过大量的图信号数据,利用GCN能够在图信号数据上获取特征的能力,结合集成学习的技术,最大限度的提高模型的准确率。
搜索关键词: 一种 基于 gcn 集成 学习 推荐 算法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011635471.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top