[发明专利]一种基于频域特征与深度学习的心肌梗塞识别分类方法在审
| 申请号: | 202011585870.1 | 申请日: | 2020-12-28 |
| 公开(公告)号: | CN112633195A | 公开(公告)日: | 2021-04-09 |
| 发明(设计)人: | 赵天麒;林鹏;曹九稳;王建中 | 申请(专利权)人: | 杭州电子科技大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
| 代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 朱月芬 |
| 地址: | 310018 浙*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于频域特征与深度学习的心电信号分类方法,包括以下步骤:采集常规12导联心电图信号,基于频域变换理论对原始心电信号进行特征提取,得到心电信号内在的频域特征图。运用深度学习框架下的卷积神经网络实现对心肌梗塞的识别分类。本发明方法首次对心电信号分频段进行频域特征图提取,并应用于深度学习框架下的心肌梗塞信号识别,基于常规12导联心电信号,不需附加新的检测设备,简单方便、容易操作。频域特征图提取到更不易提取的特征,而卷积神经网络能够自主学习数据特征,不用进行进一步数据刻画,降低了系统的复杂度。传统的单CNN算法对心电信号二次特征提取不够完整,而本发明方法采取多CNN并行的方式可以提高特征提取的准确性、全面性以及模型的鲁棒性。 | ||
| 搜索关键词: | 一种 基于 特征 深度 学习 心肌梗塞 识别 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011585870.1/,转载请声明来源钻瓜专利网。





