[发明专利]通过高效混合并行化减少深度神经网络训练次数在审
申请号: | 202011209924.4 | 申请日: | 2020-11-03 |
公开(公告)号: | CN112836787A | 公开(公告)日: | 2021-05-25 |
发明(设计)人: | 文穆吉尔·伊兰戈 | 申请(专利权)人: | 百度(美国)有限责任公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/063;G06N3/08 |
代理公司: | 北京英赛嘉华知识产权代理有限责任公司 11204 | 代理人: | 王达佐;王艳春 |
地址: | 美国加利*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 提出了自动寻找深度神经网络(DNN)的有效并行化策略的系统和方法。包括有效排序的顶点序列的计算图有助于在相对短的时间内计算最佳并行化策略。在各种DNN上评估并行化策略的有效性,并且将由各种实施例提出的策略的性能与数据并行、专家设计的策略和其它现有技术的方法进行比较。实验结果表明,所提出的策略优于基线数据并行策略,并取得了比专家设计的策略和现有技术的方法更好的性能。 | ||
搜索关键词: | 通过 高效 混合 并行 减少 深度 神经网络 训练 次数 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百度(美国)有限责任公司,未经百度(美国)有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011209924.4/,转载请声明来源钻瓜专利网。