[发明专利]基于自监督表征学习的极化SAR影像地物分类方法有效

专利信息
申请号: 202010854358.6 申请日: 2020-08-24
公开(公告)号: CN112052754B 公开(公告)日: 2023-05-05
发明(设计)人: 任博;赵阳阳;侯彪;焦李成;马晶晶;马文萍 申请(专利权)人: 西安电子科技大学
主分类号: G06V10/764 分类号: G06V10/764;G06V20/13;G06V10/56;G06V10/82;G06N3/0464;G06N3/084
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于自监督表征学习的极化SAR影像地物分类方法,主要解决现有极化SAR深度卷积网络分类所需标签数多、鲁棒性差的问题。其方案是:对极化SAR原始数据进行极化相干矩阵模态表征提取和Pauli色彩模态表征提取;设计自监督表征学习损失函数及网络框架,并在不使用标签数据的情况下对该框架进行训练;将训练好的网络框架权重值迁移到深度卷积分类网络模型中;使用少量有标签样本对该深度卷积分类网络进行微调训练,得到训练好的分类器;将测试数据输入到训练好的分类器,得到最终的分类结果。本发明减少了对标签数据量的需求,提高了极化SAR深度卷积网络的分类精度和鲁棒性,可用于指导农业和海洋监测。
搜索关键词: 基于 监督 表征 学习 极化 sar 影像 地物 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010854358.6/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top