[发明专利]基于自监督表征学习的极化SAR影像地物分类方法有效
申请号: | 202010854358.6 | 申请日: | 2020-08-24 |
公开(公告)号: | CN112052754B | 公开(公告)日: | 2023-05-05 |
发明(设计)人: | 任博;赵阳阳;侯彪;焦李成;马晶晶;马文萍 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V20/13;G06V10/56;G06V10/82;G06N3/0464;G06N3/084 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于自监督表征学习的极化SAR影像地物分类方法,主要解决现有极化SAR深度卷积网络分类所需标签数多、鲁棒性差的问题。其方案是:对极化SAR原始数据进行极化相干矩阵模态表征提取和Pauli色彩模态表征提取;设计自监督表征学习损失函数及网络框架,并在不使用标签数据的情况下对该框架进行训练;将训练好的网络框架权重值迁移到深度卷积分类网络模型中;使用少量有标签样本对该深度卷积分类网络进行微调训练,得到训练好的分类器;将测试数据输入到训练好的分类器,得到最终的分类结果。本发明减少了对标签数据量的需求,提高了极化SAR深度卷积网络的分类精度和鲁棒性,可用于指导农业和海洋监测。 | ||
搜索关键词: | 基于 监督 表征 学习 极化 sar 影像 地物 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010854358.6/,转载请声明来源钻瓜专利网。
- 上一篇:基于曲面拟合的地形生成方法
- 下一篇:一种组合式滚装过驳渡船