[发明专利]基于新型全卷积网络的等模矢量分解图像加密分析方法有效
申请号: | 202010524057.7 | 申请日: | 2020-06-10 |
公开(公告)号: | CN111709867B | 公开(公告)日: | 2022-11-25 |
发明(设计)人: | 王君;王凡 | 申请(专利权)人: | 四川大学 |
主分类号: | G06T1/00 | 分类号: | G06T1/00;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610065 四川省成都市武*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于新型全卷积网络的等模矢量分解图像加密分析方法。该方法包括:基于等模矢量分解的加密系统、加密分析的网络模型、网络训练与加密系统分析四部分。通过输入明文‑密文对对设计好的加密分析网络模型进行训练,然后通过训练好的加密分析网络模型,输入密文图像,即可获得攻击分析的结果,即恢复的高质量明文图像。所提出的加密分析方法相比传统攻击方法,无需知道加密秘钥或私钥及其他加密系统参数等即可实现有效的加密分析,能够恢复恢复出高质量的明文图像;提出的深度学习方法,其训练时间短,相比传统方法训练速度提高了7倍;提出的方法具有较好的泛化能力,能够采用一种图像库训练,而采用另一种图像库进行测试成功;最后,该方法对传输中的噪声和裁剪也有较好的鲁棒性。 | ||
搜索关键词: | 基于 新型 卷积 网络 矢量 分解 图像 加密 分析 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010524057.7/,转载请声明来源钻瓜专利网。