[发明专利]一种基于深度学习的多源数据融合目标识别方法有效
申请号: | 201910326562.8 | 申请日: | 2019-04-23 |
公开(公告)号: | CN110110765B | 公开(公告)日: | 2022-03-08 |
发明(设计)人: | 何敏;乔曦雨;唐伟;陈俊希 | 申请(专利权)人: | 四川九洲电器集团有限责任公司 |
主分类号: | G06V10/80 | 分类号: | G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都九鼎天元知识产权代理有限公司 51214 | 代理人: | 钱成岑;管高峰 |
地址: | 621000 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的多源数据融合目标识别方法,包括:步骤1,对待识别目标的多源数据进行数据预处理,获取待识别目标的复合图像;所述数据预处理的过程为:(1)对多源数据进行配准关联;(2)将配准关联后的多源数据进行可视化转换为组合元素,将组合元素按一定的排列组合规则生成复合图像;步骤2,将待识别目标的复合图像输入训练完成的深度神经网络模型进行识别;所述训练完成的深度神经网络模型为:深度神经网络采用训练目标的多源数据经数据预处理得到的复合图像进行训练得到的深度神经网络模型。本发明利用深度学习技术,实现了多源数据融合目标识别,无需人工参与特征设计、权重赋值,具有较强的自学习能力和适应性。 | ||
搜索关键词: | 一种 基于 深度 学习 数据 融合 目标 识别 方法 | ||
【主权项】:
1.一种基于深度学习的多源数据融合目标识别方法,其特征在于,包括:步骤1,对待识别目标的多源数据进行数据预处理,获取待识别目标的复合图像;所述数据预处理的过程为:(1)对多源数据进行配准关联;(2)将配准关联后的多源数据进行可视化转换为组合元素,将组合元素按一定的排列组合规则生成复合图像;步骤2,将待识别目标的复合图像输入训练完成的深度神经网络模型进行识别;所述训练完成的深度神经网络模型为:深度神经网络采用训练目标的多源数据经数据预处理得到的复合图像进行训练得到的深度神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川九洲电器集团有限责任公司,未经四川九洲电器集团有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910326562.8/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置