[发明专利]一种基于深度学习的多源数据融合目标识别方法有效

专利信息
申请号: 201910326562.8 申请日: 2019-04-23
公开(公告)号: CN110110765B 公开(公告)日: 2022-03-08
发明(设计)人: 何敏;乔曦雨;唐伟;陈俊希 申请(专利权)人: 四川九洲电器集团有限责任公司
主分类号: G06V10/80 分类号: G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08
代理公司: 成都九鼎天元知识产权代理有限公司 51214 代理人: 钱成岑;管高峰
地址: 621000 四*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的多源数据融合目标识别方法,包括:步骤1,对待识别目标的多源数据进行数据预处理,获取待识别目标的复合图像;所述数据预处理的过程为:(1)对多源数据进行配准关联;(2)将配准关联后的多源数据进行可视化转换为组合元素,将组合元素按一定的排列组合规则生成复合图像;步骤2,将待识别目标的复合图像输入训练完成的深度神经网络模型进行识别;所述训练完成的深度神经网络模型为:深度神经网络采用训练目标的多源数据经数据预处理得到的复合图像进行训练得到的深度神经网络模型。本发明利用深度学习技术,实现了多源数据融合目标识别,无需人工参与特征设计、权重赋值,具有较强的自学习能力和适应性。
搜索关键词: 一种 基于 深度 学习 数据 融合 目标 识别 方法
【主权项】:
1.一种基于深度学习的多源数据融合目标识别方法,其特征在于,包括:步骤1,对待识别目标的多源数据进行数据预处理,获取待识别目标的复合图像;所述数据预处理的过程为:(1)对多源数据进行配准关联;(2)将配准关联后的多源数据进行可视化转换为组合元素,将组合元素按一定的排列组合规则生成复合图像;步骤2,将待识别目标的复合图像输入训练完成的深度神经网络模型进行识别;所述训练完成的深度神经网络模型为:深度神经网络采用训练目标的多源数据经数据预处理得到的复合图像进行训练得到的深度神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川九洲电器集团有限责任公司,未经四川九洲电器集团有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910326562.8/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top