[发明专利]一种基于深度学习网络的雷达辐射源信号分选方法及系统有效
申请号: | 201910239950.2 | 申请日: | 2019-03-27 |
公开(公告)号: | CN110109060B | 公开(公告)日: | 2022-11-22 |
发明(设计)人: | 唐怀玉;刘明骞;廖桂悦;陈健;宫丰奎 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G01S7/02 | 分类号: | G01S7/02;G01S7/38;G06N3/04 |
代理公司: | 西安长和专利代理有限公司 61227 | 代理人: | 黄伟洪 |
地址: | 710071 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于电子对抗中雷达辐射源信号的分选技术领域,公开了基于深度学习网络的雷达辐射源信号分选方法及系统,对接收的雷达辐射源信号进行预过滤处理;再对接收信号进行崔‑威廉斯分布时频分析,获取二维时频图像;以及通过基于堆栈混合自编码器提取特征,并利用半监督线性判别法进行降维后对雷达辐射源信号进行分选。本发明通过提取崔‑威廉斯分布时频特征,去除了相关信息之间的冗余,降低了特征维度,同时可以减少信号噪声;由于本发明利用去噪自编码器、稀疏自编码器以及普通自编码器进行堆叠提取特征,这样网络既具有较好的泛化能力也具有提取出更抽象的稀疏特征的能力,增加了网络的鲁棒性和分选正确率。 | ||
搜索关键词: | 一种 基于 深度 学习 网络 雷达 辐射源 信号 分选 方法 系统 | ||
【主权项】:
1.一种基于深度学习网络的雷达辐射源信号分选方法,其特征在于,所述基于深度学习网络的雷达辐射源信号分选方法对接收的雷达辐射源信号进行预过滤处理;再对接收信号进行崔‑威廉斯分布时频分析,获取二维时频图像;以及通过基于堆栈混合自编码器提取特征,并利用半监督线性判别法进行降维后对雷达辐射源信号进行分选。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910239950.2/,转载请声明来源钻瓜专利网。