[发明专利]基于卷积神经网络的智能闪电识别装置有效
| 申请号: | 201910063540.7 | 申请日: | 2019-01-23 |
| 公开(公告)号: | CN109829408B | 公开(公告)日: | 2022-05-17 |
| 发明(设计)人: | 祝宝友;彭长志;刘非凡;王文伟;马明;汪仲儒;刘国进;万泽润 | 申请(专利权)人: | 中国科学技术大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
| 代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 任岩 |
| 地址: | 230026 安*** | 国省代码: | 安徽;34 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 一种基于卷积神经网络的智能闪电识别装置,所述识别装置包括:输入端,用于输入待识别闪电波形数据,所述闪电波形数据为一维数组序列;首层卷积层,与所述输入端相连,用于初步提取闪电波形数据的特征向量;中间处理层,与所述首层卷积层相连,用于进一步提取闪电波形数据的特征向量并降低特征向量的维度;全局最大池化层,与所述中间处理层相连,用于把所述中间处理层所提取的闪电波形数据的特征向量降到一维;全连接层,与所述全局最大池化层相连,用于综合所述全局最大池化层降到一维的特征向量;输出端,与所述全连接层相连,用于输出代表闪电类型的一维特征向量。 | ||
| 搜索关键词: | 基于 卷积 神经网络 智能 闪电 识别 装置 | ||
【主权项】:
1.一种基于卷积神经网络的智能闪电识别装置,包括:输入端,用于输入待识别闪电波形数据,所述闪电波形数据为一维数组序列;首层卷积层,与所述输入端相连,用于初步提取闪电波形数据的特征向量;中间处理层,与所述首层卷积层相连,用于进一步提取闪电波形数据的特征向量并降低特征向量的维度;全局最大池化层,与所述中间处理层相连,用于把所述中间处理层所提取的闪电波形数据的特征向量降到一维;全连接层,与所述全局最大池化层相连,用于综合所述全局最大池化层降到一维的特征向量;输出端,与所述全连接层相连,用于输出代表闪电类型的一维特征向量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910063540.7/,转载请声明来源钻瓜专利网。
- 上一篇:基于卷积神经网络的智能闪电识别方法
- 下一篇:驾驶员情绪状态检测方法及系统





